Abstract
Technetium (Tc) was the first artificially created by man and has no stable isotope. The most crucial technetium isotope environmentally /sup 99/Tc is a pure beta emitter with a half-life of 2.1 X 105 years. The main source of /sup 99/Tc to the environment is the disposal of liquid wastes from nuclear installations or during separation and recovery of spent nuclear fuels. Because of its long half life, high fission yield, mobility and current interest in the collective long term doses, it is necessary to establish a knowledge of the behavior of /sup 99/Tc in the environment for complete assessment of the impact of nuclear industry. Due to various analytical difficulties however, data on the behavior of Tc in the environment are limited. In the literature, many techniques are reported for the analysis of Tc. A very sensitive, precise and powerful technique is required which can be applied to environmental samples in order to gain information by obtaining more precise data to assess the impact of Tc releases on man. Attention has been focussed for this purpose on a new powerful technique i.e. inductively coupled plasma mass spectrometry (ICP-MS). This report has been directed towards the development of ICP-MS. The
More>>
Ihsanullah,
[1]
- Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Health Physics Div.
Citation Formats
Ihsanullah,.
ICP-MS as advantageous analytical technique for the determination of long-lived /sup 99/Tc in the environment.
Pakistan: N. p.,
1992.
Web.
Ihsanullah,.
ICP-MS as advantageous analytical technique for the determination of long-lived /sup 99/Tc in the environment.
Pakistan.
Ihsanullah,.
1992.
"ICP-MS as advantageous analytical technique for the determination of long-lived /sup 99/Tc in the environment."
Pakistan.
@misc{etde_10114002,
title = {ICP-MS as advantageous analytical technique for the determination of long-lived /sup 99/Tc in the environment}
author = {Ihsanullah,}
abstractNote = {Technetium (Tc) was the first artificially created by man and has no stable isotope. The most crucial technetium isotope environmentally /sup 99/Tc is a pure beta emitter with a half-life of 2.1 X 105 years. The main source of /sup 99/Tc to the environment is the disposal of liquid wastes from nuclear installations or during separation and recovery of spent nuclear fuels. Because of its long half life, high fission yield, mobility and current interest in the collective long term doses, it is necessary to establish a knowledge of the behavior of /sup 99/Tc in the environment for complete assessment of the impact of nuclear industry. Due to various analytical difficulties however, data on the behavior of Tc in the environment are limited. In the literature, many techniques are reported for the analysis of Tc. A very sensitive, precise and powerful technique is required which can be applied to environmental samples in order to gain information by obtaining more precise data to assess the impact of Tc releases on man. Attention has been focussed for this purpose on a new powerful technique i.e. inductively coupled plasma mass spectrometry (ICP-MS). This report has been directed towards the development of ICP-MS. The technique gives a very high sensitivity enabling long lived radionuclides including /sup 99/Tc to be measured directly down to pg ml-1 levels in solution. Because of its versatility ICP-MS is finding applications for trace multielement analysis and low detection limits in almost all fields. (author).}
place = {Pakistan}
year = {1992}
month = {May}
}
title = {ICP-MS as advantageous analytical technique for the determination of long-lived /sup 99/Tc in the environment}
author = {Ihsanullah,}
abstractNote = {Technetium (Tc) was the first artificially created by man and has no stable isotope. The most crucial technetium isotope environmentally /sup 99/Tc is a pure beta emitter with a half-life of 2.1 X 105 years. The main source of /sup 99/Tc to the environment is the disposal of liquid wastes from nuclear installations or during separation and recovery of spent nuclear fuels. Because of its long half life, high fission yield, mobility and current interest in the collective long term doses, it is necessary to establish a knowledge of the behavior of /sup 99/Tc in the environment for complete assessment of the impact of nuclear industry. Due to various analytical difficulties however, data on the behavior of Tc in the environment are limited. In the literature, many techniques are reported for the analysis of Tc. A very sensitive, precise and powerful technique is required which can be applied to environmental samples in order to gain information by obtaining more precise data to assess the impact of Tc releases on man. Attention has been focussed for this purpose on a new powerful technique i.e. inductively coupled plasma mass spectrometry (ICP-MS). This report has been directed towards the development of ICP-MS. The technique gives a very high sensitivity enabling long lived radionuclides including /sup 99/Tc to be measured directly down to pg ml-1 levels in solution. Because of its versatility ICP-MS is finding applications for trace multielement analysis and low detection limits in almost all fields. (author).}
place = {Pakistan}
year = {1992}
month = {May}
}