You need JavaScript to view this

Harmonic analysis and global solvability of a differential operator invariant on motion groups and semi-simple Lie groups; Analyse harmonique et resolubilite globale d`un operateur differentiel invariant sur les groupes de deplacements et groupes de Lie semi-simples

Abstract

Let V be a real finite dimensional vector space and let K be a connected compact Lie group, which acts on V by means of a continuous linear representation {rho}. Let G=V x{sub p} K be the motion group which is the semi-direct product of V by K and let P be an invariant differential operator on G. In this paper we give a necessary and sufficient condition for the global solvability of P on G. Now let G be a connected semi-simple Lie group with finite centre and let P be an invariant differential operator on G. We give also a necessary and sufficient condition for the global solvability of P on G. (author). 8 refs.
Authors:
Publication Date:
Aug 01, 1991
Product Type:
Technical Report
Report Number:
IC-91/236
Reference Number:
SCA: 661300; PA: AIX-23:015351; SN: 92000647068
Resource Relation:
Other Information: PBD: Aug 1991
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DYNAMICAL GROUPS; MATHEMATICAL OPERATORS; LIE GROUPS; FOURIER TRANSFORMATION; IRREDUCIBLE REPRESENTATIONS; 661300; OTHER ASPECTS OF PHYSICAL SCIENCE
OSTI ID:
10113327
Research Organizations:
International Centre for Theoretical Physics (ICTP), Trieste (Italy)
Country of Origin:
IAEA
Language:
French
Other Identifying Numbers:
Other: ON: DE92615231; TRN: XA9130248015351
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
INIS
Size:
40 p.
Announcement Date:
Jun 30, 2005

Citation Formats

El-Hussein, K. Harmonic analysis and global solvability of a differential operator invariant on motion groups and semi-simple Lie groups; Analyse harmonique et resolubilite globale d`un operateur differentiel invariant sur les groupes de deplacements et groupes de Lie semi-simples. IAEA: N. p., 1991. Web.
El-Hussein, K. Harmonic analysis and global solvability of a differential operator invariant on motion groups and semi-simple Lie groups; Analyse harmonique et resolubilite globale d`un operateur differentiel invariant sur les groupes de deplacements et groupes de Lie semi-simples. IAEA.
El-Hussein, K. 1991. "Harmonic analysis and global solvability of a differential operator invariant on motion groups and semi-simple Lie groups; Analyse harmonique et resolubilite globale d`un operateur differentiel invariant sur les groupes de deplacements et groupes de Lie semi-simples." IAEA.
@misc{etde_10113327,
title = {Harmonic analysis and global solvability of a differential operator invariant on motion groups and semi-simple Lie groups; Analyse harmonique et resolubilite globale d`un operateur differentiel invariant sur les groupes de deplacements et groupes de Lie semi-simples}
author = {El-Hussein, K}
abstractNote = {Let V be a real finite dimensional vector space and let K be a connected compact Lie group, which acts on V by means of a continuous linear representation {rho}. Let G=V x{sub p} K be the motion group which is the semi-direct product of V by K and let P be an invariant differential operator on G. In this paper we give a necessary and sufficient condition for the global solvability of P on G. Now let G be a connected semi-simple Lie group with finite centre and let P be an invariant differential operator on G. We give also a necessary and sufficient condition for the global solvability of P on G. (author). 8 refs.}
place = {IAEA}
year = {1991}
month = {Aug}
}