Abstract
Free-boundary nearly rigid displacements are considered in a plasma confined by a magnetic field consisting of one part generated by the plasma current density, and one part being due to steady currents in fixed external conductors. An induced surface current effect and a related force on the plasma arise when the externally applied field is inhomogeneous in the direction of displacement. This additional force has not been taken into account in conventional MHD theory. In the particular case of tokamaks, the induced surface current effect has two impacts on vertical nearly rigid displacements. First, there arises an additional restoring force and a positive contribution to the change in potential energy when the externally applied field is inhomogeneous in the vertical direction. A special design of poloidal field coils can thus provide new means for vertical position control in tokamaks, also in the case of strongly elongated cross-sections. Second, an earlier simplified model, in which the plasma is represented by a line current, has to be modified since the plasma is a highly conducting body of finite size. 4 refs.
Citation Formats
Lehnert, B.
Vertical displacement and position control in tokamaks.
Sweden: N. p.,
1994.
Web.
Lehnert, B.
Vertical displacement and position control in tokamaks.
Sweden.
Lehnert, B.
1994.
"Vertical displacement and position control in tokamaks."
Sweden.
@misc{etde_10112810,
title = {Vertical displacement and position control in tokamaks}
author = {Lehnert, B}
abstractNote = {Free-boundary nearly rigid displacements are considered in a plasma confined by a magnetic field consisting of one part generated by the plasma current density, and one part being due to steady currents in fixed external conductors. An induced surface current effect and a related force on the plasma arise when the externally applied field is inhomogeneous in the direction of displacement. This additional force has not been taken into account in conventional MHD theory. In the particular case of tokamaks, the induced surface current effect has two impacts on vertical nearly rigid displacements. First, there arises an additional restoring force and a positive contribution to the change in potential energy when the externally applied field is inhomogeneous in the vertical direction. A special design of poloidal field coils can thus provide new means for vertical position control in tokamaks, also in the case of strongly elongated cross-sections. Second, an earlier simplified model, in which the plasma is represented by a line current, has to be modified since the plasma is a highly conducting body of finite size. 4 refs.}
place = {Sweden}
year = {1994}
month = {Jun}
}
title = {Vertical displacement and position control in tokamaks}
author = {Lehnert, B}
abstractNote = {Free-boundary nearly rigid displacements are considered in a plasma confined by a magnetic field consisting of one part generated by the plasma current density, and one part being due to steady currents in fixed external conductors. An induced surface current effect and a related force on the plasma arise when the externally applied field is inhomogeneous in the direction of displacement. This additional force has not been taken into account in conventional MHD theory. In the particular case of tokamaks, the induced surface current effect has two impacts on vertical nearly rigid displacements. First, there arises an additional restoring force and a positive contribution to the change in potential energy when the externally applied field is inhomogeneous in the vertical direction. A special design of poloidal field coils can thus provide new means for vertical position control in tokamaks, also in the case of strongly elongated cross-sections. Second, an earlier simplified model, in which the plasma is represented by a line current, has to be modified since the plasma is a highly conducting body of finite size. 4 refs.}
place = {Sweden}
year = {1994}
month = {Jun}
}