You need JavaScript to view this

A generalization of F. and M. Riesz Theorem

Abstract

A generalization of F. and M. Riesz Theorem for almost invariant operators on Homogeneous Banach spaces of compact abelian groups has been shown to be true for almost periodic operators in the case of non-compact abelian groups. (author) 7 refs.
Authors:
Publication Date:
Aug 01, 1991
Product Type:
Technical Report
Report Number:
IC-91/267
Reference Number:
SCA: 661300; PA: AIX-23:012863; SN: 92000638758
Resource Relation:
Other Information: PBD: Aug 1991
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BANACH SPACE; MATHEMATICAL OPERATORS; GROUP THEORY; 661300; OTHER ASPECTS OF PHYSICAL SCIENCE
OSTI ID:
10111556
Research Organizations:
International Centre for Theoretical Physics (ICTP), Trieste (Italy)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ON: DE92614143; TRN: XA9130288012863
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
INIS
Size:
9 p.
Announcement Date:
Jun 30, 2005

Citation Formats

Somasundaram, S. A generalization of F. and M. Riesz Theorem. IAEA: N. p., 1991. Web.
Somasundaram, S. A generalization of F. and M. Riesz Theorem. IAEA.
Somasundaram, S. 1991. "A generalization of F. and M. Riesz Theorem." IAEA.
@misc{etde_10111556,
title = {A generalization of F. and M. Riesz Theorem}
author = {Somasundaram, S}
abstractNote = {A generalization of F. and M. Riesz Theorem for almost invariant operators on Homogeneous Banach spaces of compact abelian groups has been shown to be true for almost periodic operators in the case of non-compact abelian groups. (author) 7 refs.}
place = {IAEA}
year = {1991}
month = {Aug}
}