You need JavaScript to view this

Joint maximal numerical range

Abstract

Let H be a complex Hilbert space and let B(H) be the algebra of all bounded linear operators on H. Let T = (T{sub 1},...,T{sub n}) denote an n-tuple of operators in B(H). The aim of this paper is to generalize the notion of maximal numerical range to n-tuple of operators and prove certain properties analogous to the single operator case. (author). 8 refs.
Authors:
Khan, G A; [1]  Kyle, J [2] 
  1. International Centre for Theoretical Physics, Trieste (Italy)
  2. Birmingham Univ., Birmingham (UK). Dept. of Mathematics
Publication Date:
Nov 01, 1990
Product Type:
Technical Report
Report Number:
IC-90/324
Reference Number:
SCA: 661300; PA: AIX-23:012860; SN: 92000638752
Resource Relation:
Other Information: PBD: Nov 1990
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; HILBERT SPACE; MATHEMATICAL OPERATORS; ALGEBRA; 661300; OTHER ASPECTS OF PHYSICAL SCIENCE
OSTI ID:
10111541
Research Organizations:
International Centre for Theoretical Physics (ICTP), Trieste (Italy)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ON: DE92614140; TRN: XA9130276012860
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
INIS
Size:
12 p.
Announcement Date:
Jun 30, 2005

Citation Formats

Khan, G A, and Kyle, J. Joint maximal numerical range. IAEA: N. p., 1990. Web.
Khan, G A, & Kyle, J. Joint maximal numerical range. IAEA.
Khan, G A, and Kyle, J. 1990. "Joint maximal numerical range." IAEA.
@misc{etde_10111541,
title = {Joint maximal numerical range}
author = {Khan, G A, and Kyle, J}
abstractNote = {Let H be a complex Hilbert space and let B(H) be the algebra of all bounded linear operators on H. Let T = (T{sub 1},...,T{sub n}) denote an n-tuple of operators in B(H). The aim of this paper is to generalize the notion of maximal numerical range to n-tuple of operators and prove certain properties analogous to the single operator case. (author). 8 refs.}
place = {IAEA}
year = {1990}
month = {Nov}
}