Abstract
This study demonstrates the applicability of liquid-liquid extraction by means of the commercial complexers LIX26{sup R} and LIX84{sup R} to heavy metal removal from waste waters. The composition of this oil-soluble complex is MeR{sub 2}, where Me denotes Hg{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Cu{sup 2+}, and Ni{sup 2+}, and R denotes LIX84{sup R}. This composition makes the complex electrically neutral, and all polar groups are located inside the molecule. The extraction efficiency of the complexer LIX84{sup R} for the various metal ions is evident in the succession Cu{sup 2+}, Ni{sup 2+} >> Zn{sup 2+} > Hg{sup 2+} > Cd{sup 2+}. These heavy metal ions are even readily extractable at chloride concentrations of up to 1 mol/l. As the structure of the complexer is that of an oil-soluble surfactant with complexing properties, it accumulates at the phase boundary between oil and water. Measurement of interfacial tension in various solvent systems showed that the polar solvent chloroform permits only a weak accumulation of the complexer (400 nmol/m{sup 2}), whereas the unpolar solvent kerosine permits greater accumulation specifically on the water side of the phase boundary (1958 nmol/m{sup 2}). Organic solvents solvate the complexer so well, that it is even removed from
More>>
Citation Formats
Woller, N.
Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application; Reaktive fluessig/fluessig Extraktion von Schwermetallen aus Deponiesickerwasser. Charakterisierung und Anwendung.
Germany: N. p.,
1994.
Web.
Woller, N.
Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application; Reaktive fluessig/fluessig Extraktion von Schwermetallen aus Deponiesickerwasser. Charakterisierung und Anwendung.
Germany.
Woller, N.
1994.
"Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application; Reaktive fluessig/fluessig Extraktion von Schwermetallen aus Deponiesickerwasser. Charakterisierung und Anwendung."
Germany.
@misc{etde_10110242,
title = {Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application; Reaktive fluessig/fluessig Extraktion von Schwermetallen aus Deponiesickerwasser. Charakterisierung und Anwendung}
author = {Woller, N}
abstractNote = {This study demonstrates the applicability of liquid-liquid extraction by means of the commercial complexers LIX26{sup R} and LIX84{sup R} to heavy metal removal from waste waters. The composition of this oil-soluble complex is MeR{sub 2}, where Me denotes Hg{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Cu{sup 2+}, and Ni{sup 2+}, and R denotes LIX84{sup R}. This composition makes the complex electrically neutral, and all polar groups are located inside the molecule. The extraction efficiency of the complexer LIX84{sup R} for the various metal ions is evident in the succession Cu{sup 2+}, Ni{sup 2+} >> Zn{sup 2+} > Hg{sup 2+} > Cd{sup 2+}. These heavy metal ions are even readily extractable at chloride concentrations of up to 1 mol/l. As the structure of the complexer is that of an oil-soluble surfactant with complexing properties, it accumulates at the phase boundary between oil and water. Measurement of interfacial tension in various solvent systems showed that the polar solvent chloroform permits only a weak accumulation of the complexer (400 nmol/m{sup 2}), whereas the unpolar solvent kerosine permits greater accumulation specifically on the water side of the phase boundary (1958 nmol/m{sup 2}). Organic solvents solvate the complexer so well, that it is even removed from the air side of the phase boundary. The differing accumulation of the complexer at the water/oil phase boundary explains the differing increase of phase separation time for polar and unpolar solvents. (orig.) [Deutsch] In dieser Arbeit wird unter Verwendung der handelsueblichen Komplexbildner LIX26{sup R} und LIX84{sup R} die Anwendbarkeit der reaktiven fluessig-fluessig Extraktion auf die Entfernung von Schwermetallen aus Abwaessern gezeigt. Der oelloesliche Komplex hat die Zusammensetzung MeR{sub 2} fuer Me = Hg{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Cu{sup 2+} und Ni{sup 2+} sowie R = LIX84{sup R}. Dieser Komplex ist aufgrund seiner Zusammensetzung elektrisch neutral und alle polaren Gruppen des Komplexes befinden sich im Molekuelinneren. Die Extraktionseffizienz des Komplexbildners LIX84{sup R} fuer die verschiedenen Metallionen zeigt die Reihung Cu{sup 2+}, Ni{sup 2+} >> Zn{sup 2+} > Hg{sup 2+} > Cd{sup 2+}. Auch bei Chloridkonzentrationen bis 1 mol/l werden die Schwermetallionen gut extrahiert. Da der Komplexbildner in seinem Aufbau ein oelloesliches Tensid mit komplexbildenden Eigenschaften darstellt, reichert er sich an der Phasengrenze Oel/Wasser an. Messungen der Grenzflaechenspannung in verschiedenen Loesungsmittelsystemen ergaben, dass im polaren Loesungsmittel Chloroform nur eine geringe Anreicherung des Komplexbildners stattfindet (400 nmol/m{sup 2}), waehrend im unpolaren Loesungsmittel Kerosin die Anreicherung an der Phasengrenze zum Wasser hoeher ist (1958 nmol/m{sup 2}). Organische Loesungsmittel solvatisieren den Komplexbildner aber so gut, dass an der Phasengrenze zur Luft hin eine Abreicherung stattfindet. Die unterschiedlich starke Anreicherung des Komplexbildners an der Phasengrenze Oel/Wasser erklaert die unterschiedlich starke Zunahme der Phasentrennzeit, je nachdem ob ein polares oder unpolares Loesungsmittel verwendet wird. (orig.)}
place = {Germany}
year = {1994}
month = {Jun}
}
title = {Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application; Reaktive fluessig/fluessig Extraktion von Schwermetallen aus Deponiesickerwasser. Charakterisierung und Anwendung}
author = {Woller, N}
abstractNote = {This study demonstrates the applicability of liquid-liquid extraction by means of the commercial complexers LIX26{sup R} and LIX84{sup R} to heavy metal removal from waste waters. The composition of this oil-soluble complex is MeR{sub 2}, where Me denotes Hg{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Cu{sup 2+}, and Ni{sup 2+}, and R denotes LIX84{sup R}. This composition makes the complex electrically neutral, and all polar groups are located inside the molecule. The extraction efficiency of the complexer LIX84{sup R} for the various metal ions is evident in the succession Cu{sup 2+}, Ni{sup 2+} >> Zn{sup 2+} > Hg{sup 2+} > Cd{sup 2+}. These heavy metal ions are even readily extractable at chloride concentrations of up to 1 mol/l. As the structure of the complexer is that of an oil-soluble surfactant with complexing properties, it accumulates at the phase boundary between oil and water. Measurement of interfacial tension in various solvent systems showed that the polar solvent chloroform permits only a weak accumulation of the complexer (400 nmol/m{sup 2}), whereas the unpolar solvent kerosine permits greater accumulation specifically on the water side of the phase boundary (1958 nmol/m{sup 2}). Organic solvents solvate the complexer so well, that it is even removed from the air side of the phase boundary. The differing accumulation of the complexer at the water/oil phase boundary explains the differing increase of phase separation time for polar and unpolar solvents. (orig.) [Deutsch] In dieser Arbeit wird unter Verwendung der handelsueblichen Komplexbildner LIX26{sup R} und LIX84{sup R} die Anwendbarkeit der reaktiven fluessig-fluessig Extraktion auf die Entfernung von Schwermetallen aus Abwaessern gezeigt. Der oelloesliche Komplex hat die Zusammensetzung MeR{sub 2} fuer Me = Hg{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Cu{sup 2+} und Ni{sup 2+} sowie R = LIX84{sup R}. Dieser Komplex ist aufgrund seiner Zusammensetzung elektrisch neutral und alle polaren Gruppen des Komplexes befinden sich im Molekuelinneren. Die Extraktionseffizienz des Komplexbildners LIX84{sup R} fuer die verschiedenen Metallionen zeigt die Reihung Cu{sup 2+}, Ni{sup 2+} >> Zn{sup 2+} > Hg{sup 2+} > Cd{sup 2+}. Auch bei Chloridkonzentrationen bis 1 mol/l werden die Schwermetallionen gut extrahiert. Da der Komplexbildner in seinem Aufbau ein oelloesliches Tensid mit komplexbildenden Eigenschaften darstellt, reichert er sich an der Phasengrenze Oel/Wasser an. Messungen der Grenzflaechenspannung in verschiedenen Loesungsmittelsystemen ergaben, dass im polaren Loesungsmittel Chloroform nur eine geringe Anreicherung des Komplexbildners stattfindet (400 nmol/m{sup 2}), waehrend im unpolaren Loesungsmittel Kerosin die Anreicherung an der Phasengrenze zum Wasser hoeher ist (1958 nmol/m{sup 2}). Organische Loesungsmittel solvatisieren den Komplexbildner aber so gut, dass an der Phasengrenze zur Luft hin eine Abreicherung stattfindet. Die unterschiedlich starke Anreicherung des Komplexbildners an der Phasengrenze Oel/Wasser erklaert die unterschiedlich starke Zunahme der Phasentrennzeit, je nachdem ob ein polares oder unpolares Loesungsmittel verwendet wird. (orig.)}
place = {Germany}
year = {1994}
month = {Jun}
}