You need JavaScript to view this

On the three-point function in finite temperature field theory

Abstract

The three point function in finite temperature field theory is discussed. In particular, the temperature dependence, at the one loop level, of the retarded and advanced vertex functions which can be defined both in the imaginary time and in the real time formalisms are studied. In the high temperature limit the various vertex functions differ, in general, by terms of {Omicron}(T) which are sensitive to the soft momentum scale. (author) 22 refs.; 1 fig.
Publication Date:
Sep 01, 1992
Product Type:
Technical Report
Report Number:
LAPP-A-403-92
Reference Number:
SCA: 662110; PA: AIX-25:003973; EDB-94:015640; ERA-19:005596; NTS-94:014775; SN: 93001121015
Resource Relation:
Other Information: PBD: Sep 1992
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; VERTEX FUNCTIONS; TEMPERATURE DEPENDENCE; COUPLING; QUANTUM FIELD THEORY; REAL TIME SYSTEMS; SCALAR FIELDS; 662110; THEORY OF FIELDS AND STRINGS
OSTI ID:
10109826
Research Organizations:
Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules Elementaires
Country of Origin:
France
Language:
English
Other Identifying Numbers:
Other: ON: DE94609604; TRN: FR9303126003973
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
FRN
Size:
12 p.
Announcement Date:
Jun 30, 2005

Citation Formats

Aurenche, P, Petitgirard, E, and Rio Gaztelurrutia, T del. On the three-point function in finite temperature field theory. France: N. p., 1992. Web.
Aurenche, P, Petitgirard, E, & Rio Gaztelurrutia, T del. On the three-point function in finite temperature field theory. France.
Aurenche, P, Petitgirard, E, and Rio Gaztelurrutia, T del. 1992. "On the three-point function in finite temperature field theory." France.
@misc{etde_10109826,
title = {On the three-point function in finite temperature field theory}
author = {Aurenche, P, Petitgirard, E, and Rio Gaztelurrutia, T del}
abstractNote = {The three point function in finite temperature field theory is discussed. In particular, the temperature dependence, at the one loop level, of the retarded and advanced vertex functions which can be defined both in the imaginary time and in the real time formalisms are studied. In the high temperature limit the various vertex functions differ, in general, by terms of {Omicron}(T) which are sensitive to the soft momentum scale. (author) 22 refs.; 1 fig.}
place = {France}
year = {1992}
month = {Sep}
}