You need JavaScript to view this

Computational ergodicity in simplicial quantum gravity

Abstract

It is known that there are four-manifolds which are not algorithmically recognizable. This implies that there exist triangulations of these manifolds which are separated by large barriers from the point of view of the computer algorithm. We have not observed these barriers for triangulations of S{sup 4}. ((orig.)).
Authors:
Ambjoern, J; [1]  Jurkiewicz, J [1] 
  1. Niels Bohr Inst., Copenhagen (Denmark)
Publication Date:
Apr 01, 1995
Product Type:
Journal Article
Report Number:
CONF-9409269-
Reference Number:
SCA: 662110; PA: AIX-26:064380; EDB-95:132399; SN: 95001458395
Resource Relation:
Journal Name: Nuclear Physics B, Proceedings Supplements; Journal Volume: 42; Conference: Lattice `94, Bielefeld (Germany), 25 Sep - 1 Oct 1994; Other Information: PBD: Apr 1995
Subject:
66 PHYSICS; LATTICE FIELD THEORY; ALGORITHMS; QUANTUM GRAVITY; ACTION INTEGRAL; COMPUTER CALCULATIONS; ERGODIC HYPOTHESIS; FEYNMAN PATH INTEGRAL; FOUR-DIMENSIONAL CALCULATIONS; MATHEMATICAL MANIFOLDS
OSTI ID:
101091
Country of Origin:
Netherlands
Language:
English
Other Identifying Numbers:
Journal ID: NPBSE7; ISSN 0920-5632; TRN: NL95FF424064380
Submitting Site:
NLN
Size:
pp. 704-706
Announcement Date:
Oct 05, 1995

Citation Formats

Ambjoern, J, and Jurkiewicz, J. Computational ergodicity in simplicial quantum gravity. Netherlands: N. p., 1995. Web. doi:10.1016/0920-5632(95)00356-E.
Ambjoern, J, & Jurkiewicz, J. Computational ergodicity in simplicial quantum gravity. Netherlands. doi:10.1016/0920-5632(95)00356-E.
Ambjoern, J, and Jurkiewicz, J. 1995. "Computational ergodicity in simplicial quantum gravity." Netherlands. doi:10.1016/0920-5632(95)00356-E. https://www.osti.gov/servlets/purl/10.1016/0920-5632(95)00356-E.
@misc{etde_101091,
title = {Computational ergodicity in simplicial quantum gravity}
author = {Ambjoern, J, and Jurkiewicz, J}
abstractNote = {It is known that there are four-manifolds which are not algorithmically recognizable. This implies that there exist triangulations of these manifolds which are separated by large barriers from the point of view of the computer algorithm. We have not observed these barriers for triangulations of S{sup 4}. ((orig.)).}
doi = {10.1016/0920-5632(95)00356-E}
journal = {Nuclear Physics B, Proceedings Supplements}
volume = {42}
journal type = {AC}
place = {Netherlands}
year = {1995}
month = {Apr}
}