You need JavaScript to view this

The equator map and the negative exponential functional

Technical Report:

Abstract

We define a negative exponential harmonic map from the ball B{sup n} of R{sup n} into the sphere S{sup n} of R{sup n+1}. And we prove that the equator map u{sup *} = (x/x, 0) is a negative exponential harmonic map, but not stable for the negative exponential functional when n{>=}2. Moreover, if we consider maps from a ball B{sup n} into the unit sphere S{sup m} of R{sup m} where m{>=}2, we prove that no nonconstant map can reach either the minimum or the maximum of the negative exponential functional. (author). 19 refs.
Authors:
Publication Date:
Jun 01, 1991
Product Type:
Technical Report
Report Number:
IC-91/141
Reference Number:
SCA: 661000; PA: AIX-22:081528; SN: 91000608725
Resource Relation:
Other Information: PBD: Jun 1991
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; MATHEMATICAL MANIFOLDS; TOPOLOGICAL MAPPING; EUCLIDEAN SPACE; FUNCTIONALS; RIEMANN SPACE; 661000; GENERAL PHYSICS
OSTI ID:
10105502
Research Organizations:
International Centre for Theoretical Physics (ICTP), Trieste (Italy)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ON: DE92609036; TRN: XA9129662081528
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
INIS
Size:
15 p.
Announcement Date:
Jun 30, 2005

Technical Report:

Citation Formats

Minchun, Hong. The equator map and the negative exponential functional. IAEA: N. p., 1991. Web.
Minchun, Hong. The equator map and the negative exponential functional. IAEA.
Minchun, Hong. 1991. "The equator map and the negative exponential functional." IAEA.
@misc{etde_10105502,
title = {The equator map and the negative exponential functional}
author = {Minchun, Hong}
abstractNote = {We define a negative exponential harmonic map from the ball B{sup n} of R{sup n} into the sphere S{sup n} of R{sup n+1}. And we prove that the equator map u{sup *} = (x/x, 0) is a negative exponential harmonic map, but not stable for the negative exponential functional when n{>=}2. Moreover, if we consider maps from a ball B{sup n} into the unit sphere S{sup m} of R{sup m} where m{>=}2, we prove that no nonconstant map can reach either the minimum or the maximum of the negative exponential functional. (author). 19 refs.}
place = {IAEA}
year = {1991}
month = {Jun}
}