You need JavaScript to view this

Perfect topological charge for asymptotically free theories

Abstract

The classical equations of motion of the perfect lattice action in asymptotically free d=2 spin and d=4 gauge models possess scale invariant instanton solutions. This property allows the definition of a topological charge on the lattice which is perfect in the sense that no topological defects exist.The basic construction is illustrated in the d=2 O(3) non-linear {sigma}-model and the topological susceptibility is measured to high precision in the range of correlation lengths {xi} element of (2-60). Our results strongly suggest that the topological susceptibility is not a physical quantity in this model. ((orig.)).
Authors:
Blatter, M; [1]  Burkhalter, R; [1]  Hasenfratz, P; [1]  Niedermayer, F [1] 
  1. Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
Publication Date:
Apr 01, 1995
Product Type:
Journal Article
Report Number:
CONF-9409269-
Reference Number:
SCA: 662110; PA: AIX-26:064355; EDB-95:132427; SN: 95001458370
Resource Relation:
Journal Name: Nuclear Physics B, Proceedings Supplements; Journal Volume: 42; Conference: Lattice `94, Bielefeld (Germany), 25 Sep - 1 Oct 1994; Other Information: PBD: Apr 1995
Subject:
66 PHYSICS; LATTICE FIELD THEORY; TOPOLOGY; SIGMA MODEL; UNIFIED GAUGE MODELS; ACTION INTEGRAL; CORRELATION FUNCTIONS; FIELD EQUATIONS; FOUR-DIMENSIONAL CALCULATIONS; INSTANTONS; LAGRANGE EQUATIONS; MAGNETIC SUSCEPTIBILITY; NONLINEAR PROBLEMS; O GROUPS; SCALE INVARIANCE; TWO-DIMENSIONAL CALCULATIONS
OSTI ID:
101049
Country of Origin:
Netherlands
Language:
English
Other Identifying Numbers:
Journal ID: NPBSE7; ISSN 0920-5632; TRN: NL95FF395064355
Submitting Site:
NLN
Size:
pp. 799-801
Announcement Date:
Oct 05, 1995

Citation Formats

Blatter, M, Burkhalter, R, Hasenfratz, P, and Niedermayer, F. Perfect topological charge for asymptotically free theories. Netherlands: N. p., 1995. Web. doi:10.1016/0920-5632(95)00385-M.
Blatter, M, Burkhalter, R, Hasenfratz, P, & Niedermayer, F. Perfect topological charge for asymptotically free theories. Netherlands. https://doi.org/10.1016/0920-5632(95)00385-M
Blatter, M, Burkhalter, R, Hasenfratz, P, and Niedermayer, F. 1995. "Perfect topological charge for asymptotically free theories." Netherlands. https://doi.org/10.1016/0920-5632(95)00385-M.
@misc{etde_101049,
title = {Perfect topological charge for asymptotically free theories}
author = {Blatter, M, Burkhalter, R, Hasenfratz, P, and Niedermayer, F}
abstractNote = {The classical equations of motion of the perfect lattice action in asymptotically free d=2 spin and d=4 gauge models possess scale invariant instanton solutions. This property allows the definition of a topological charge on the lattice which is perfect in the sense that no topological defects exist.The basic construction is illustrated in the d=2 O(3) non-linear {sigma}-model and the topological susceptibility is measured to high precision in the range of correlation lengths {xi} element of (2-60). Our results strongly suggest that the topological susceptibility is not a physical quantity in this model. ((orig.)).}
doi = {10.1016/0920-5632(95)00385-M}
journal = []
volume = {42}
journal type = {AC}
place = {Netherlands}
year = {1995}
month = {Apr}
}