You need JavaScript to view this

Multibondic cluster algorithm

Abstract

Inspired by the multicanonical approach to simulations of first-order phase transitions we propose for q-state Potts models a combination of cluster updates with reweighting of the bond configurations in the Fortuin-Kastelein-Swendsen-Wang representation of this model. Numerical tests for the two-dimensional models with q=7, 10 and 20 show that the autocorrelation times of this algorithm grow with the system size V as {tau}{proportional_to}V{sup {alpha}}, where the exponent takes the optimal random walk value of {alpha}{approx}1. ((orig.)).
Authors:
Janke, W; [1]  Kappler, S [1] 
  1. Mainz Univ. (Germany). Inst. fuer Physik
Publication Date:
Apr 01, 1995
Product Type:
Journal Article
Report Number:
CONF-9409269-
Reference Number:
SCA: 662110; PA: AIX-26:064336; EDB-95:132452; SN: 95001458352
Resource Relation:
Journal Name: Nuclear Physics B, Proceedings Supplements; Journal Volume: 42; Conference: Lattice `94, Bielefeld (Germany), 25 Sep - 1 Oct 1994; Other Information: PBD: Apr 1995
Subject:
66 PHYSICS; LATTICE FIELD THEORY; PHASE TRANSFORMATIONS; COMPUTERIZED SIMULATION; ALGORITHMS; CORRELATION FUNCTIONS; CORRELATIONS; CRYSTAL MODELS; PARTITION FUNCTIONS; STOCHASTIC PROCESSES; TWO-DIMENSIONAL CALCULATIONS
OSTI ID:
101028
Country of Origin:
Netherlands
Language:
English
Other Identifying Numbers:
Journal ID: NPBSE7; ISSN 0920-5632; TRN: NL95FF372064336
Submitting Site:
NLN
Size:
pp. 876-878
Announcement Date:
Oct 05, 1995

Citation Formats

Janke, W, and Kappler, S. Multibondic cluster algorithm. Netherlands: N. p., 1995. Web. doi:10.1016/0920-5632(95)00408-2.
Janke, W, & Kappler, S. Multibondic cluster algorithm. Netherlands. https://doi.org/10.1016/0920-5632(95)00408-2
Janke, W, and Kappler, S. 1995. "Multibondic cluster algorithm." Netherlands. https://doi.org/10.1016/0920-5632(95)00408-2.
@misc{etde_101028,
title = {Multibondic cluster algorithm}
author = {Janke, W, and Kappler, S}
abstractNote = {Inspired by the multicanonical approach to simulations of first-order phase transitions we propose for q-state Potts models a combination of cluster updates with reweighting of the bond configurations in the Fortuin-Kastelein-Swendsen-Wang representation of this model. Numerical tests for the two-dimensional models with q=7, 10 and 20 show that the autocorrelation times of this algorithm grow with the system size V as {tau}{proportional_to}V{sup {alpha}}, where the exponent takes the optimal random walk value of {alpha}{approx}1. ((orig.)).}
doi = {10.1016/0920-5632(95)00408-2}
journal = []
volume = {42}
journal type = {AC}
place = {Netherlands}
year = {1995}
month = {Apr}
}