You need JavaScript to view this

Green LPG

Abstract

The use of energy gases with renewable origins will become important with diminishing fossil resources. This as the infrastructure of the gaseous fuels is well built out and the distribution networks already exist. LPG is one of the most versatile fuels around, perfect for rural areas and in many other applications. The fossil origin of the fuel will, in today's climate and environmental debate, however position it as a thing of the past and not part of the future energy supply. The technology and development performed under this and previous programs with the Swedish Gas Centre will however suggest a way to bridge this conception and make LPG a part of the future energy mix. This report constitutes the results from the development performed under the SGC program 210 and is aimed at verifying the results from the previous SGC program 198, proving the concept for producing propane from renewable glycerol. Attractive and potentially profitable LPG premium segments that can be reached by producing bio-propane would be the autogas market. Another attractive segment to target is the outdoor and camping segment, where there already exist awareness for nature and the environment. A third interesting segment is in small-scale heat or  More>>
Authors:
Hulteberg, Christian; Brandin, Jan; Leveau, Andreas [1] 
  1. Biofuel-Solution AB, Limhamn (Sweden)
Publication Date:
Dec 15, 2010
Product Type:
Technical Report
Report Number:
SGC-R-222
Resource Relation:
Other Information: 17 refs., 26 figs., 3 tabs.
Subject:
09 BIOMASS FUELS; RENEWABLE ENERGY SOURCES; LIQUEFIED PETROLEUM GASES; BIOFUELS; GLYCEROL; PROPANE; ACROLEIN
OSTI ID:
1004315
Research Organizations:
Svenskt Gastekniskt Center (SGC), Malmoe (Sweden)
Country of Origin:
Sweden
Language:
English
Other Identifying Numbers:
Other: ISSN 1102-7371; TRN: SE1107016
Availability:
Also available from: http://www.sgc.se/dokument/SGC222.pdf; OSTI as DE01004315
Submitting Site:
SWD
Size:
38 p. pages
Announcement Date:
Feb 07, 2011

Citation Formats

Hulteberg, Christian, Brandin, Jan, and Leveau, Andreas. Green LPG. Sweden: N. p., 2010. Web.
Hulteberg, Christian, Brandin, Jan, & Leveau, Andreas. Green LPG. Sweden.
Hulteberg, Christian, Brandin, Jan, and Leveau, Andreas. 2010. "Green LPG." Sweden.
@misc{etde_1004315,
title = {Green LPG}
author = {Hulteberg, Christian, Brandin, Jan, and Leveau, Andreas}
abstractNote = {The use of energy gases with renewable origins will become important with diminishing fossil resources. This as the infrastructure of the gaseous fuels is well built out and the distribution networks already exist. LPG is one of the most versatile fuels around, perfect for rural areas and in many other applications. The fossil origin of the fuel will, in today's climate and environmental debate, however position it as a thing of the past and not part of the future energy supply. The technology and development performed under this and previous programs with the Swedish Gas Centre will however suggest a way to bridge this conception and make LPG a part of the future energy mix. This report constitutes the results from the development performed under the SGC program 210 and is aimed at verifying the results from the previous SGC program 198, proving the concept for producing propane from renewable glycerol. Attractive and potentially profitable LPG premium segments that can be reached by producing bio-propane would be the autogas market. Another attractive segment to target is the outdoor and camping segment, where there already exist awareness for nature and the environment. A third interesting segment is in small-scale heat or combined heat and power generation, where a premium price can be reaped for renewable energy as well as the addition of LPG to biogas. Another important aspect of the renewable LPG is that it motivates external stakeholders, such as local, regional, national and international governments as well as environmental and other lobby groups to consider LPG a part of the future energy mix and not a thing of the past. A good starting point for two and three carbon energy gases is glycerine, with its three carbon backbone. The reason for focusing on glycerine is its benign chemical nature, it is: - Harmless from a toxic standpoint; - Chemically inert; - Non-corrosive; - Relatively high energy density; - Zero carbon dioxide emissions. It is also readily available as the production of biofuels (from which glycerine is a side product) in the world has increased markedly over the last 10 year period. This glut in the glycerol production has also lowered worldwide prices of glycerine. Since the key step in producing energy gases from glycerol is the dehydration of glycerol to acrolein, this step has attracted much attention during the development work. The step has been improved during the performed work and the need for any regeneration of the catalyst has been significantly reduced, if not omitted completely. This improvement allows for a simple fixed bed reactor design and will save cost in reactor construction as well as in operating costs of the plant. The same conclusion can be drawn from the combination of the two functionalities (dehydration and hydrogenation) in designing a catalyst that promote the direct reaction of 1-propanol to propane in one step instead of two. The experiments with the decarbonylation of acrolein to form ethane show that the catalyst deactivation rates are quite rapid. The addition of noble metal to the catalyst seems to improve the longevity of the catalyst, but the coking is still too severe to provide for a commercially viable process. It is believed that there is a possible way forward for the decarbonylation of acrolein to ethane; it will however require additional time and resources spent in this area. In this work it has been shown that all of the catalytic steps involved in the production of propane from glycerol have sufficient longterm stability and endurance and it is motivated to recommend that the project continues to pilot plant testing stage}
place = {Sweden}
year = {2010}
month = {Dec}
}