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3. Executive Summary 

The main objective of the project during the first period of funding is to develop an 
acoustic probe for monitoring particle size and volume fraction in slurries in the absence and 
presence of gas bubbles. The goals are to commission and verify the probe components and 
system operation, develop theory for the forward and inverse problems for acoustic wave 
propagation through a three phase medium, and experimentally verify the theoretical analysis. 
The acoustic probe will permit measurement of solid content in gas-liquid-solid waste slurries in 
tanks and pipelines across the Department of Energy complex. Particularly, in the second 
funding period, a prototype probe will be fabricated, commissioned and tested to demonstrate the 
capability to accurately measure slurries of one to five weight percent solids. 

Our research work has established a solid theoretical foundation for predicting 
attenuation and phase speed of acoustic waves propagating through solid-liquid suspensions, 
both in the presence as well as absence of gas bubbles. The theory is based on ensemble 
averaging of the equations of motion in the solid and liquid phases to obtain expressions for the 
“effective properties” of the slurry mixture in terms of coefficients which appear in the equations 
of motion for the solid particle. The attenuation theory accounts for losses due to viscous 
dissipation, nonadiabatic thermal effects, and incoherent scattering, and as a result can cover a 
wide range of frequencies and particle sizes. The theory also applies to polydispersed 
suspensions of spherical particles. The theory agrees with results obtained by previous 
investigations who examined limiting cases of thermal attenuation at small volume fraction 
(Allegra and Hawley, 1972) and viscous attenuation at large frequencies (Sangani, Zhang and 
Prosperetti, 1991). The comprehensive theory developed allows us to interrogate a relatively 
large range of particle sizes and physical properties. The attenuations predicted from theory are 
in generally good agreement with experimental data obtained by Pulse/FFT data acquisition 
methods for solid-liquid slurries of soda-lime glass particles of 14.9 microns and 65 microns 
mean radius and polystyene particles of 79 microns mean radius at concentrations ranging from 5 
to 50 percent solids by volume in water. The primary attenuation mechanisms for the former 
system are due to viscous and scattering losses, whereas, for the latter system, thermal and 
scattering losses dominate. Good comparisons are also obtained for 0.11 micron radius 
polystyrene particles in water from 5 to 50 percent solids by volume (Allegra and Hawley, 1992) 
where attenuation is dominated by thermal affects. 

Another goal of the project was to devise a technique to remove the noise introduced by 
the presence of a small amount of gas bubbles in the suspension to infer the properties of the 
solid-liquid suspension. Experiments and analyses were made for the solid-gas-liquid slurries of 
soda lime glass particles of 14.9 micron mean radius at 5 and 10 percent by volume in water with 
gas bubbles from 25 to 150 micron radius at low volume fractions. The primary conclusion is 
that the noise is significant at low frequencies near the bubble resonance frequencies and the 
noise is minimal at high frequencies. We show it is possible to estimate the effects of bubbles 
and eliminate the slight noise produced by bubbles at higher frequencies to yield the volume 
fraction of the particles. 
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An inverse theory was also developed to determine the concentration and solids particle 
size distribution in a solid-liquid slurry given the attenuation as a function of frequency using 
regularization techniques that have been successful for bubbly liquids. We have found that the 
success of solving the inverse problem is limited since it depends strongly on the physical 
properties of the particles and the frequency range used in the inverse calculations. We have 
determined bounds necessary for determining the particle size distribution. 

The first six months of the new funding period focused on demonstrating the capability to 
accurately measure volume fractions of dilute suspensions in the range of 0.004 to 0.050 percent. 
The Pulse/FFT method accurately measures attenuation for soda lime glass beads (14.9 micron 
radius), clays in water, and a Hanford surrogate salt simulant in this range. A linear relationship 
is obtained for attenuation versus volume fraction, and the theory accurately predicts the 
monodispersed soda-lime glass bead data. The linear relationship should readily permit 
application of the acoustic monitor to dilute slurries. 

The results of this project has relevance to the DOE mission of mobilizing, transporting 
and processing solid-liquid slurries by providing a reliable and safe monitor of percent solids in 
these slurries. Significant impact is expected for application as an accurate, safe and reliable 
monitor which is non-invasive is required to quantify across site transfer of dilute and 
concentrated slurries from storage tanks to processing facilities for high level waste treatment. 
Transfer of this technology to the DOE complex is the primary objective of the second funding 
period of this project whereby a proto-type acoustic monitor will be designed, commissioned and 
demonstrated to accurately measure low weight percent slurries in a flow loop and on a test 
transfer line. 

4. Research Objectives 

The primary objective of the research project during the first funding period was to 
develop an acoustic probe to measure volume percent solids in solid-liquid slurries in the 
presence of small amounts of gas bubbles. This problem was addressed because of the great 
need for a non-invasive, accurate and reliable method for solids monitoring in liquid slurries in 
the presence of radiolytically generated gases throughout the DOE complex. These 
measurements are necessary during mobilization of salts and sediments in tanks, transport of 
these slurries in transfer lines to processing facilities across a site, and, in some instances, during 
high level waste processing. Although acoustic probes have been commonly used for monitoring 
flows in single-phase fluids (McLeod, 1967), their application to monitor two-phase mixtures has 
not yet fully realized its potential. A number of investigators in recent years have therefore been 
involved in developing probes for measuring the volume fractions in liquid solid suspensions 
(Atkinson and Kytomaa, 1993; Greenwood et al., 1993; Martin et al., 1995) and in liquid-liquid 
suspensions (Bonnet and Tavlarides, 1987; Tavlarides and Bonnet, 1988, Yi and Tavlarides, 
1990; Tsouris and Tavlarides, 1993, Tsouris et al., 1995). In particular, Atkinson and Kytomaa 
(1993) showed that the acoustic technique can be used to determine both the velocity and the 
volume fraction of solids while Martin et al. (1995) and Spelt et al. (1999) showed that the 
acoustic probe can also be used to obtain information on the size distribution of the particles. In 
a recent testing of in-line slurry monitors with radioactive slurries suspended with Pulsair Mixers 
(Hylton & Bayne, 1999), an acoustic probe did not compare well with other instruments most 



probably due to presence of entrained gases and improper acoustic frequency range of 
interrogation. 

The work of the investigators cited has established the potential of the acoustic probe for 
characterizing/monitoring two-phase flows in relatively ideal, well-characterized suspensions. 
Two major factors which we judge has prevented its wide-spread use in the processing industry, 
particularly for dilute suspensions, is careful selection of the frequency range for interrogation 
and quantification and removal of the noise introduced by bubbles from the acoustic signal 
obtained from the suspension. 

Our research during the first funding period to develop an acoustic probe for solid-gas- 
liquid suspensions has resulted in a theory, supported by our experiments, to describe small- 
amplitude dilute suspensions (Norato, 1999, Spelt et al., 1999, Spelt et al., 2001). The theory 
agrees well with experimental data of sound attenuation up to 45 ~01% suspensions of 0.11 and 
77 micron radius polystyrene particles in water and 0.4 to 40 vol %, suspensions of 32 micron 
soda-lime glass particles in water. Also, analyses of our attenuation experiments for solid-gas- 
liquid experiments suggest the theory can be applied to correct for signal interference due to the 
presence of bubbles over a selected frequency range to permit determination of the solid-liquid 
volume fraction. Further, we show experimentally that a reliable linear dependency of weight 
percent solids with attenuation is obtained for low weight fractions at high frequencies of 
interrogation where bubble interference is minimal. 

There was a collaborative effort during the first funding period with the Pacific 
Northwest National Laboratories in that Dr. Margaret Greenwood was a co-investigator on the 
project. Dr. Greenwood provided a high level of experimental knowledge and techniques on 
ultrasound propagation, measurement and data processing. During the second funding period the 
slurry test loop at Oak Ridge National Laboratories under the direction of Mr. Tom Hylton will 
be employed to demonstrate the measurement capabilities of the proto-type acoustic monitor. 

5. Methods and Results 

Our research during the last three and one-half years has established a solid theoretical 
foundation for predicting attenuation and phase speed of acoustic waves propagating through 
solid-liquid suspensions, both in the presence as well as absence of gas bubbles (Spelt et al., 
1998; Spelt et al., 2001). The attenuation theory accounts for losses due to viscous dissipation, 
nonadiabatic thermal effects, and incoherent scattering, and as a result can cover a wide range of 
frequencies and particle sizes. The theory also applies to polydisperse suspensions of spherical 
particles. The theory agrees with the results obtained by previous investigators who examined 
limiting cases. For example, our theory agrees with that of Allegra and Hawley (1972) who 
considered only the case of thermal attenuation at small volume fractions and with Sangani, 
Zhang and Proseperetti (199 1) who considered only the case of viscous attenuation at large 
frequencies. The comprehensive theory developed allows us to interrogate a relatively large 
range of particle sizes or particle physical properties. The theory was also tested against the 
experimental data obtained by previous investigators (e.g. (Allegra and Hawley, 1972)) and in 
our laboratory. 
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Demonstration of our theory is accomplished experimentally with the set-up shown in 
Figure 1. An ultrasonic pulse generator (Panametrics 5052 PR) generates an electric pulse and 
sends it to the emitting transducer. The actuated emitting transducer transmits an acoustic pulse 
through the sample actuating the receiving transducer, where the signal is transmitted to and read 
by an oscilloscope (Lecroy 93 1 OA). An FFT analysis of the amplitude is performed on the spike 
pulse, outputting voltage as a function of frequencies of the pulse. This procedure is performed 
on the suspending liquid, and the solid-liquid or solid-gas bubble-liquid slurry. The voltages are 
used to calculate attenuation. 

Comparison between the theory and the experiments is shown in Figures 2-6. Figure 2 
shows attenuation as a function of frequency for glass particles with about 15 micron radius at 5 
and 10 percent volume fractions. For these particles the viscous and scattering losses are the 
primary attenuation mechanisms for the range of frequency considered in the figure. Figure 3 
shows the comparison for about 77 micron radius polystyrene particles in water at 5 percent 
volume fractions. For this system the thermal attenuation is important at smaller frequencies and 
scattering at higher frequencies. The two theoretical curves correspond to assuming that (i) the 
suspension is monodisperse and (ii) the particle size distribution is Gaussian with a standard 
deviation of 1 micron. The peaks seen in the figure correspond to resonances in shape 
oscillations. Figure 4 shows attenuation as a function of volume fraction for 63 micron glass 
particles in water at various frequencies. The viscous and scattering losses are important in these 
relatively dense suspensions. Good agreement here suggests that the theory is reasonably 
accurate in predicting the volume fraction dependence even at high volume fractions. Figure 5 
shows comparison with the data for 0.11 micron polystyrene particles in water obtained by 
Allegra and Hawley (1972). For this system the attenuation is dominated by the thermal effects. 

In Spelt et al. (1999) we investigated in detail the inverse problem so determining the 
particle size distribution of the particles given the attenuation as a function of frequency. We 
devised and compared various analytical techniques for solving the inverse problem and 
determined the conditions, e.g. the particle size and frequency range, necessary for determining 
the particle size distribution. 

As mentioned earlier, one of the aims of our project was to devise a technique whereby 
the noise introduced by the presence of small amount of gas bubbles in the suspension can be 
removed to infer the properties of solid-liquid suspension. We have done detailed analysis of the 
noise introduced by bubbles. The primary conclusion is that the noise is significant at 
frequencies that are not much greater than the resonance frequencies of bubbles. Beyond the 
resonance frequency of the bubbles, the attenuation due to the presence of bubbles decrease with 
the increasing frequency while the attenuation due to solids increase with the increasing 
frequency. Thus the noise is minimal at sufficiently high frequencies. It is possible then to use 
the data at low frequencies to estimate the effects of bubbles and eliminate the slight noise 
produced by the bubbles at higher frequencies to yield volume fraction of the particles. We have 
illustrated this through our experiments on solid-liquid suspensions sparged with bubbles. The 
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Figure 1. Schematic diagram of Pulse/FFT setup used to measure attenuation. A 
spike pulse is generated by the pulser/receiver and is transmitted to the 
transmitting transducer which is in contact with the sample. After 
traveling through the sample and being acquired by the receiving 
transducer the pulse is routed through the pulser/receiver to the 
oscilloscope. 



Figure 2. Comparison between experimental results 
and forward problem theory predictions for 
the attenuation versus frequency curves for 
soda-lime glass slurries at 5% and 10% 
solids by volume. The experimental solids 
size distribution has a mean radius of 14.9 
microns with standard deviation of 3.56 
microns. The forward theory predictions are 
based on a log-normal distribution with a 
mean radius of 14 microns and standard 
deviation of 7 microns. 

Figure 3. Experimental and theoretical results for the 
attenuation in a mixture of polystyrene 
particles (mean radius 79 + 3 micron and 1.8 
micron standard deviation) in water at 0.05 
volume fraction. Circles are experiments, 
solid and broken lines are the theory for 
monodispersed particles of 79 microns and 
77 microns radius, respectively. 



Figure 4. Experimental and theoretical results for the 
attenuation as a function of volume fraction for 
different frequencies, using glass particles (63 + 
8.5 microns radius) and glycerol. Markers: 
experiments, and solid lines: theory for 
monodispersed particles. Frequencies: 2.5 MHz 
(A); 3.5 MHz (0); 4 MHz (+); 4.5 MHz (x); 
5 MHz (0). 

Figure 5. Attenuation as a function of solids volume 
fraction for the data of Allegra and Hawley 
(1972). The symbols represent experimental 
data at 3 MHz (A); 9 MHz (0); 15 MHz (+); 
21 MHz (x); 39 MHz (V). The curves 
represent the results of the effective medium 
approach used in this study. 
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Figure 6. Results of predicting the attenuation due to the presence of bubbles in a solid- 
gas-liquid slurry and simply subtracting that attenuation from the total 
attenuation. The symbols represent experimental data for the solid-liquid and 
solid-gas-liquid slurries and the difference after subtracting the bubble 
attenuation. 
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preliminary results have been presented in the PhD dissertation of the student supported by the 
research (Norato, 1999); a more complete work will be submitted for publication in the near 
future. Figure 6 shows a comparison between theory and experiments for a gas-solid-liquid 
system. Note that the attenuation as a function of frequency goes through a minimum as the 
attenuation due to bubbles diminish while that due to solids increase with increasing frequency. 

The above mentioned work deals with solids weight fraction above 5 percent. Our 
current activities extend the method to dilute suspensions in the weight percent range of l-5 
percent. We have conducted experiments for these low weight percents. The results are shown 
in Figures 7-9. We note from Figure 7 that the experimental data for soda-lime glass beads are 
in a reasonably good agreement with the theory based on monodispersed suspensions with no 
adjustable parameters. Figures 8 and 9 show that attenuation is significant for the entire range of 
volume fractions. Figure 9 shows results for a crystallized salt solution prepared according to 
surrogate protocol procedures for average Hanford supernate containing suspended salt particles 
(Glocar et al., 2000). These results show that with suitable calibration of the particle size, it 
would be possible to determine the volume fraction of particles from such attenuation frequency 
data. In principle only one calibration point would be needed, as a linear relationship appears to 
hold. 

6. Relevance, Impact and Technology Transfer 

The following answers the nine questions posed for this section. 

a. This scientific work has direct application to monitor, in real time, solid-liquid 
slurry suspensions in the presence of gas bubbles at volume fractions of solids from 0.005 to 
0.50. Monitors can potentially be installed both on transfer lines, in a non-invasive manner, or 
in-tanks through riser entry ports. 

b. This new technology has the potential to improve cleanup approaches and 
significantly reduce future costs, schedules and risks and meet DOE compliance requirements in 
the following ways: 

b.1) By assuring uniform suspensions of solids through a tank during mobilization, 
sluicing, or emptying of tank salts and sediments. Time and costs to execute these 
operations will be minimized. 

b.2) Transfer of low weight percent slurries in transfer lines from DOE operated tank 
farms to a contractor staging tanks for processing can be done in an accurate 
manner. This assurance will permit compliance of schedule requirements and 
appropriate guarantee of required and expected material transfers. 

b.3) The monitor can be employed to determine onset of transfer line plugging to 
prevent such occurrences and alert personnel for quick and appropriate response 
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Figure 7. Attenuation versus frequency for slurries of 15 micron glass particles in water at 
various weight percent solids. The comparisons of theory (solid lines) with 
experiments (symbols) are given in ascending order for 1 .O, 2.5, 5.0 and 12.0 weight 
percent solids. 
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Figure 8. Attenuation versus weight fraction for slurries of 16 micron glass particles in 
water at three frequencies. Data shown with symbols are compared with a linear 
fit shown as solid lines. The curves in ascending order are for frequencies of 8, 
10, and 12 MHz. 
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Figure 9 Attenuation versus weight fraction for the crystallized salt solution 
at three frequencies. The frequencies studied are (0) 12 MHz (x), 
10 MHz, and (f) 8 MHz. 
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b.4) The monitor can be used to assure homogeneous suspensions of a mixture of 
solids in processing vessels during HLW and LAW treatment, for example, to 
guarantee glass former slurries uniformity for feeding melters. 

C. The continuation of the project during the second funding period will result in a 
proto-type monitor which will be demonstrated at the ORNL flow loop. Also, efforts will be 
made to test it at the Hanford site. This effort should be completed by 9-30-03. Rapid 
deployment could follow subsequently pending success and availability of funds. 

d. The project impact at Syracuse University resulted in continuation of this 
scientific effort leading to the proto-type development. The University infrastructure to conduct 
this research has improved through equipment acquisition and laboratory development. We have 
graduated one PhD, one MS and trained during the first funding period. We have had a 
collaboration with Dr. Margaret Greenwood from PNNL during the first funding period and a 
two-way transfer of knowledge was accomplished. We have an agreement with ORNL to test 
the prototype monitor on the ORNL two phase flow loop during the second funding period, and 
this should provide a quality test facility and personnel for this aspect of the project. See section 
c above for answers to the remaining questions. 

e. Larger scale proto-type monitor development and testing are warranted, required 
and in progress with the second funding period of this project. The knowledge attained during 
the first period of funding is the basis for the proto-type monitor development and expected 
success in demonstration and future deployment. 

f. Our collaboration with PNNL scientist Dr. Margaret Greenwood resulted in 
training Dr. Michael Norato (during his Ph.D. thesis work on the project) and transfer of 
knowledge. Our subsequent improvements of the monitor using the Pulse/FFT provides another 
technique PNNL can employ for their acoustic ultrasound investigations. Our particle size 
measurement and estimation techniques from attenuation measurements also should be of benefit 
to PNNL activities in this application. 

g- We have increased out understanding in this area by improving our knowledge to 
monitor (experimental developments) and interpret attenuation signals (theoretical 
developments) heretofore not as accurately possible. These results provide the basis for 
continued development of the acoustic monitor. 

h. 
include: 

The hurdles to overcome are the topics of the current funding period. These 

h.1) Development of software and data acquisition system to determine volume 
fraction of particles. 

h.2) Construct, test and commission in-line/at-tank acoustic monitor. 

h.3) Conduct flow loop tests of monitor at ORNL and refine as needed. 
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h.4) Test refined monitor at Hanford. 

i. Ms. Judith Ann Bamberger (509-37%3898-FON; Judith.bamberger@,pnl.gov) 
offered to collaborate on the project. Should we have success on h.3 above she offered to assist 
in implementation/testing at a Hanford test loop. Dr. Rajiv Srivastava, Florida International 
University, also offered to collaborate in ways yet to be determined. 

7. Project Productivity 

The project accomplished most of the targeted goals. We requested and received a one- 
year no cost extension on the project due to typical delays in progress. We were not able to 
develop a theory to invert the acoustic signal to permit unambiguous prediction of the solid 
particle size distribution, along with the volume fraction. We show regions of physical 
properties and signal interrogation ranges where this may be possible. The results we have 
obtained were, however, quite valuable and are the basis for the continuation as described above. 

8. Personnel supported: 

8.1. P.I. Prof. Lawrence L. Tavlarides, Syracuse University 
Co-P.I.: Professor Ashok Sangani, Syracuse, University 
Co-Investigator: Dr. Margaret Greenwood 
Post-Doctoral: Dr. Peter Spelt, currently at Imperial College, London, UK 
Ph.D. Student: Dr. Michael A. Norato, currently at Westinghouse SRTC 
M.S. Student: Mr. Mark Hedges, currently at Kionex, Inc. 
Research Associate: Mr. Alexander Shcherbakov, on leave N.T.U. Kiev, Ukraine 
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11. Transitions 

The work is being transitioned through the second funding period. 

12. Patents 

None 

13. Future Work 

Continuation of funding in progress. 
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Ensemble-averaged equations are derived for small-amplitude acoustic wave propaga- 
tion through non-dilute suspensions. The equations are closed by introducing effective 
properties of the suspension such as the compressibility, density, viscoelasticity, heat 
capacity, and conductivity. These effective properties are estimated as a function 
of frequency, particle volume fraction, and physical properties of the individual 
phases using a self-consistent, effective-medium approximation. The theory is shown 
to be in excellent agreement with various rigorous analytical results accounting for 
multiparticle interactions. The theory is also shown to agree well with the exper- 
imental data on concentrated suspensions of small polystyrene particles in water 
obtained by Allegra & Hawley and for glass particles in water obtained in the present 
study. 

1. Introduction 

We consider the problem of predicting the attenuation of sound waves propagating 
through suspensions. When the particle volume fraction in the suspension is very small 
the particle interactions may be neglected and the attenuation can be determined as a 

1 function of the sound wave frequency by examining the interaction of a single particle 
with the incident wave as has been done by a number of investigators in the past. For 
example, Carstensen & Foldy (1947) examined the problem of dilute bubbly liquids 

. while Epstein & Carhart (1953) and Allegra & Hawley (1972) examined, respectively, 
the case of dilute emulsions and dilute slurries. Since the attenuation behaviour is 
strongly dependent on the particle radius, the attenuation-frequency data for dilute 
suspensions may be used for determining the particle size distribution as shown by 
Duraiswami, Prabhukumar & Chahine (1998), who considered the case of bubbly 
liquids. The corresponding problem for dilute suspensions has been examined by 
Spelt et al. (1999). 

The particle interactions can have a significant effect on the acoustic behaviour 
of non-dilute suspensions and at present rigorous calculations accounting for these 
interactions are lacking. Direct attack on the problem, i.e. solving the linearized 
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energy, momentum, and continuity equations for multiparticle systems, appears to be 
a daunting task even with the development of efficient computers. Thus, it is necessary 
to develop a suitable approximate theory and to assess its validity by comparison 
with the experimental data obtained with different kinds of suspensions. 

We use the method of ensemble averaging to derive linearized continuity, mo- 

. 

mentum, and energy equations for the suspensions. These equations are closed by 
introducing effective properties of the suspensions, namely the effective conductivity, 
viscosity (or viscoelasticity), compressibility, and density. To estimate these properties 
as a function of frequency and physical properties and volume fractions of the in- 
dividual phases, we must determine the relation between the conditionally averaged 
temperature and velocity fields inside a test particle and the temperature and velocity 
fields of the suspension. A self-consistent, effective-medium approximation is used for 
this purpose. 

The predictions of the theory are compared with several known rigorous analytical 
calculations accounting for multiparticle interactions in dense suspensions in the 
limiting case of relatively small frequencies for which the acoustic wavelength is large 
compared with the particle radius. At very low frequencies, for which the thermal and 
viscous (Stokes) lengths become large compared with the particle radius, we expect 
the velocity and temperature fields to satisfy, respectively, the Stokes and Laplace 
equations. The effective properties such as the viscosity, conductivity, and permeability, 
for monodisperse suspensions in this limit are well-established (e.g. Ladd 1990; MO 
& Sangani 1994). It is shown that the effective-medium approximation is in excellent 
agreement with these results. For moderate frequencies, at which the Stokes layer is 
very small compared with the particle radius and the wavelength is large compared 
with the radius, the velocity field satisfies the Laplace equation outside the Stokes 
layers. Added mass and Basset force coefficients, which contribute to the effective 
density of the suspension, have been determined by Sangani, Zhang & Prosperetti 
(1991) for this limiting case. Once again, the effective-medium predictions are shown 
to be in excellent agreement with these rigorous calculations. 

We also compare the predictions of the theory with the experimental data on 
attenuation. Probably the best data in the literature are due to Allegra & Hawley 
(1972) who measured attenuation in a polystyrene-water system at frequencies for 
which the thermal effects contribute most significantly to the attenuation. Our theory 
is shown to be in excellent agreement with their data. To test the theory for the 
cases in which the attenuation due to viscous and scattering effects is significant, we 
have measured attenuation in glass-water and glass-water/glycerol systems at small 
to intermediate frequencies. For smaller particles, for which the viscous attenuation 
dominates, the theory and experiments are in very good agreement with each other. 
For larger particles, for which the scattering dominates, the agreement is very good 
only up to about 30% volume fractions. 

. 

The organization of the rest of the paper is as follows. In $2 we derive rigor- 
ous average equations for linear acoustics and introduce effective properties of the 
suspensions. In 5 3 we compare the predictions of the effective-medium theory with 
various analytical results and show how the effective properties vary with the fre- 
quency and particle volume fraction. Section 4 describes the experimental set-up used 
for obtaining attenuation data. Section 5 gives a comparison between the theory 
and various experimental data. In $6 we present some results on the phase speed 
of sound waves, and discuss the possibility of using phase speed measurements for 
measuring particle volume fractions. Finally, 57 summarizes important findings of 
the study. 

_-. - _-._.-___----_____ 
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2.1. Linearized equations 

Let us consider a small-amplitude plane acoustic wave with frequency o propagating 
through a uniform, monodisperse suspension of solid particles of radius a. We write 
the density as p + p’eeiDf, the temperature as T + T’eel”t, and the velocity as rcee”‘*. 
A note regarding the notation: both the equilibrium and small fluctuation values are 
important for the density and temperature and we therefore use primes to denote the 
amplitudes of the fluctuations in these quantities. Only the amplitudes of the velocity 
and the other field variables (stress, heat flux, etc.) will be needed, and we denote the 
amplitudes of these quantities without a prime so that the resulting equations look 
less cluttered. When the amplitudes p’, T’ and u are small, the terms involving the 
products of these quantities can be neglected from the continuity, momentum, and 
energy equations to obtain the following linearized equations: 

-iwp’ + pV . u = 0, (1) 

.- 

.* 

-iopC,. T’ = -2 - pC,p-‘(y - 1)V. U. (3) 

(2) 

In writing the last equation, we have made use of the linearized equation of state to 
eliminate the pressure from the usual energy equation. The stress tensor amplitude 
Dij for a Newtonian fluid is given by 

where d,j is the deviatoric stress amplitude 

(4) 

(5) 

C,: is the constant volume specific heat, “J = C,/C, is the ratio of specific heats, ,U 
and pti are, respectively, the shear and bulk coefficients of viscosity, c is the adiabatic 
sound speed through the fluid, and p is the coefficient of thermal expansion. Note 
that the first and the third terms inside the square brackets on the right-hand side of 
(4) are related to the thermodynamic pressure amplitude: 

Finally, qj = -tidT’/axj in (3) is the heat flux amplitude, K being the thermal 
conductivity. 

Inside the solid particles equations similar to (l)-(3) apply with the stress tensor 
given by (Landau & Lifschitz 1986) 

oij = [{ !+- { p(ij-;‘cu}Tj &j+&j, 

where 1 and p are the Lame constants for the particles which are assumed to be 
perfectly elastic. Note that for solids it is customary to write the stress in terms 
of displacement instead of velocity. For small-amplitude oscillatory motions the 
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amplitudes of the two are, of course, related by a factor of I/(-io), and this fact has 
been used in writing the first term on the right-hand side of the above equation. Note 
also that the factor x+(2/3@ is the bulk modulus of the solid. Thus, the isotropic part 
of the stress tensor represented by the terms inside the square brackets in the above 
equation arises from the density and temperature changes in the solid. The deviatoric 
stress tensor Jli is defined in the manner similar to (5), with the fluid viscosity replaced 
by the ‘particle viscosity’, ,up = p/(-io). Note that the Lame constant ,E is sometimes 
referred to as the shear modulus. 

The above linearized equations must be solved subject to the boundary conditions 
of continuity of velocity, temperature, heat flux, and traction (Oijnj, nj being the unit 
outward normal at the particle surface) at the interface between the particles and the 
fluid. In concentrated suspensions particle interactions are significant and the rigorous 
evaluation of sound speed and attenuation through the suspension would require the 
very difficult task of solving the above set of equations in a domain containing many 
particles. 

The problem as outlined here involves a number of variables. It may be possible to 
simplify it in some limiting cases of small or large frequencies or when the physical 
properties (e.g. density and compressibility) of the two phases are widely different as 
in the case of acoustic propagation in bubbly liquids (Prosperetti 1984). However, 
it is desirable to measure the attenuation over a wide range of frequencies in order 
to characterize the suspension, and for most solid-liquid suspensions the ratio of 
physical properties does not differ significantly from unity. Thus, it is necessary to 
solve the full problem as described above. 

2.2. Ensemble-averaged linearized equations for suspensions 

In this subsection we ensemble-average the equations for the amplitudes of density, 
velocity, and temperature in the fluid and solid phases, and obtain thereby the 
linearized continuity, momentum, and energy equations for the suspension. It will be 
shown that the resulting equations have a form similar to the equations for a single 
phase provided that the suspension is assigned suitable properties, which we refer to 
as the effective properties of the suspensions. An important outcome of the averaging 
process will be that it will yield rigorous expressions for various effective properties of 
the suspension. Unlike the case of single-phase fluids, the effective properties will be 
seen to be functions of the wave frequency, and the equations we derive are therefore 
restricted to small-amplitude sinusoidal acoustic waves. 

Let us denote by g(x) the particle indicator function defined to be unity when the 
point x is inside any of the particles and zero when x is in the fluid. The properties 
and field variables of the liquid and particles will be denoted by subscripts 1 and p, 
respectively. The ensemble-averaged variables will be denoted by angular brackets. 

Multiplying the continuity equation for the liquid by the liquid indicator function 
1 - g and for the particle by g, adding the two, and averaging the resulting equation 
we obtain the continuity equation for the suspension: 

-iw(p’) +pj((l -gg)V.q) +pp(gV.up) = 0. (8) 

The last two terms on the left-hand side of the above equation must now be expressed 
in terms of the divergence of the average velocity, i.e. V. (u), so that the resulting 
equation resembles the continuity equation of a single-phase medium (cf. (1)). We 
begin with the identity 

Pl((l -dV*ur) +PpW’qJ = P/V. (4 f(P, -PdkV*~p) +P/((ur -qJPVgj. (9) 
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The gradient of the indicator function is zero at all points except at the particle-fluid 
interface where it is proportional to the Dirac delta function owing to the step jump 
in g across the particleefluid interface. More specifically, 

. . vg = -n6(x - XJ, (10) 

where x = x,~ represents the surface of the particles, 6 is the Dirac delta function, and 
n is the unit normal vector, pointing into the fluid, at the particle surface. 

Because the velocity is continuous across the solid-fluid interfaces, the last term 
in (9) vanishes; the second term on the right-hand side contains an as yet unknown 
quantity, (gV . up), which is related to the average amplitude of the dilatation rate 
inside the particles. We shall restrict our analysis to the suspensions which are 
isotropic on a macroscale. For such suspensions the above quantity will be expected 
to be proportional to the amplitude of other scalar quantities such as V * (u), the 
average amplitude for the mixture dilatation rate. We therefore introduce the closure 
relation 

(g(x)(V * qJ4) = 4&V * (4bL (11) 

where C$ is the volume fraction of the solids. The passage of a wave will induce 
non-zero amplitudes of other scalar quantities such as (r’) and (~kk) also, and one 
may write a more general expression in which the average particle dilatation rate 
is expressed as a linear combination of all these scalar variables. In that case one 
must determine separately how variation in temperature, pressure and density affect 
separately the dilatation inside the particles. However, since all these scalar variables 
will be related to each other through algebraic relations that depend on the frequency 
and effective wavenumbers for the special case of sinusoidal acoustic waves, it is 
unnecessary to decompose the particle dilatation into various terms. Likewise, the 
dilatation rate for particles may also depend on the higher-order scalar derivatives 
such as V2V * (u). Since the average equations for the suspension are expected to obey 
wave equations, the Laplacian of the average dilatation rate can always be written 
in terms of the dilatation rate and the effective wavenumbers. Thus, it will suffice 
to use (11) for the dilatation rate inside the particles keeping in mind that I.,, must 
be evaluated such that it accounts for not only the first derivative of the suspension 
velocity, but also its higher-order derivatives and temperature and pressure. The 
calculation for A,, to be presented in the next section does account for all these effects. 

We note that in the present study we are interested in deriving a dispersion relation 
for the passage of small-amplitude acoustic waves through a suspension, and not 
a set of average equations valid for all suspension flows. The latter can indeed be 
a daunting task as equations such as (11) will not apply to the general case for 
which, as mentioned above, the effects of temperature, pressure, etc. must all be 
written separately, and the closure relation will possibly also include the higher-order 
derivatives. The procedure, however, is general enough in the sense that it can be used 
to determine the dispersion relation for other small-amplitude acoustic problems. For 
example, it can also be used for determining the dispersion relation for fluid-saturated 
porous media, which are sometimes modelled as fixed beds. Note that for the fixed 
bed case although the average particle velocity (u,) = (gz+,)/4 is zero, the left-hand 
side of (11 j, and hence &, are non-zero. The radial oscillations of the fixed particles 
will contribute to A,, in such a situation. Note that V * (u) is non-zero in all acoustic 
problems. 

Substituting for (gV * u,) from (11) into (9) yields the continuity equation for the 

_.- _-_. -_ 
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suspension given by 
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-k>(p’) + P‘.~>V * (u) = 0, (12) 
with the effective equilibrium density of the suspension to be used in the suspension 
continuity equation, i.e. P(~,~,, given by 

PC,.@ = Pi + (Pp - P/h%. (13) 

Physically, j.,, represents the ratio of average dilatation amplitude in the particle phase 
to that in the fluid-particle mixture or the suspension. This coethcient will depend, in 
addition to wave frequency, on the compressibilities of both phases, volume fraction, 
spatial distribution of the particles. and other variables appearing in the governing 
equations listed in the previous subsection. Thus, we see that, in general, the effective 
equilibrium density of the suspension to be used in the suspension continuity equation 
cannot be given by some arbitrary mixture rule, e.g. the volume-averaged density or 
the mass-averaged density. An approximate scheme for estimating i,,, will be described 
in $2.4. 

We now proceed to derive the momentum equation for the suspension starting 
from (2) and its counterpart for the particles. Using the same procedure as in the 
continuity equation we obtain 

The effective (equilibrium) density of the suspension to be used in the momentum 
equation, p,,,.,, is given by 

Pn1.e = pi + (pp - p,k@, (15) 
with the coefficient L,. defined by 

q%(Z~)(-~, = (gW,(x)). (16) 

Physically, i,. represents the ratio of average velocity amplitude inside the particles 
to that in the suspension. Once again this coefficient, and other such coefficients to 
be introduced in this subsection, will: in general, depend on complex multiparticle 
interactions, and the details of its evaluation will be described later. 

The right-hand side of (14) can be simplified using the identity 

=(8~~~~)+((1-g)~)+((“ij,,,-~jj,,) 8). (17) 

The last term in the above equation, being related to the jump in the traction 
across the interface, vanishes owing to the boundary condition ofj,pnj = gij,/ptj at the 
particle-fluid interface. Thus, we see that the right-hand side of (14) simply equals 
the divergence of the average stress in the suspension, i.e. the momentum equation 
for the suspension is given by 

We must supplement the above momentum equation with an expression for the 
average stress. The linearity of the equations implies that the stress amplitude will be 
linear in the gradient of average velocity amplitude and (T’). 
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Let us first consider the isotropic part of the average stress or, equivalently, the 
stress trace. Multiplying the isotropic part in (4) by 1 - g and that in (7) by g and 
averaging, we obtain 

with 

and 

(c’py-‘je = c’f~,/:‘~ + (PA,, [{I + 2fi,‘3} - cfp,/:‘,] , (20) 

P,:,e = ,&A 1 - 4Q, (21) 

The coefficient A, was defined earlier (cf. (11)). je7, on the other hand, is a new 
coefficient which is defined as the ratio of average temperature amplitude inside the 
particles to that in the mixture, i.e. 

42, (7%) = (g(x) q4). (23) 

Both the effective ?p/y and the bulk viscosity of the suspension depend on the 
coefficient A,,. This is not surprising since both depend on the average dilatation 
amplitude inside the particles. The result that the effective bulk viscosity ,LL[,,~ of the 
suspension depends only on the bulk viscosity of the fluid may appear strange at 
first sight, but it is really a consequence of the way the isotropic part of the stress is 
defined for the liquid and solids (cf. (4) and (7)). The stress arising from the thermal 
expansion or, equivalently, temperature fluctuations depends on p(~j- l)C,./PT of the 
two phases and the relative temperature fluctuations in the two phases. 

Since the deviatoric stress amplitudes in the individual phases depend only on the 
velocity gradient amplitude, we expect the average deviatoric stress to be linear in the 
gradient of average velocity amplitude. It also must be traceless. If we further assume 
that the suspension is macroscopically isotropic, then the average deviatoric stress is 
characterized by a single effective (shear) viscosity, ,np. Thus, we write 

(djj) = pe 
( 
;,‘:! + ?;1:.j’ - gj,v. tu,> 

’ I I (241 

To obtain an expression for the effective viscosity we need to evaluate only one 
component of the average deviatoric stress. We shall take, without loss of generality, 
the mean velocity amplitude to be given by 

(u)(x) = _veikx = -ik,,eikcc’x, (25) 

where k,,, is the effective wavenumber vector for the compressional wave through 
the suspension. We shall choose this vector to be aligned along the xl-axis. The 
11 -component of the deviatoric stress is given by 

(26) 

The last term on the right-hand side of the above equation, being related to the 
dilatation amplitudes, can be readily related to the coefficient i,,, introduced earlier. 
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The first term on the right-hand side can be expressed in terms of a coefficient & 
defined by 

(27) 

With this definition it is straightforward now to relate (dli) to the gradient in velocity 
amplitude : 

@ll) = 2 h + 4Ad (&J - /L,)] tj$ - + [,u, + @,, (pLp - cll)] !!i!!$ (28) 

Substituting for (u) from (25) in (28) and in (24) with i = j = 1 and comparing the 
resulting expressions yields the following expression for the effective viscosity: 

PC’ = PI + $&p - PII (3Ll- &) . (29) 

Finally, the energy equation for the suspension, obtained by averaging 1 - g times 
the energy equation for the liquid plus g times that for the solid, is given by 

-iw(pC,~)r(T’) = -f#$ - (pC,p-‘(7 - l)),,, V - (u). 
‘J 

Here an argument similar to (17) has been used to simplify the energy-flux term 
(thereby using the boundary condition at the particle surface that the heat flux is 
continuous). In (30) the effective heat capacity of the suspension is given by 

bc,>e = d-c,/ + 61-T (&c~,p - !&,i) (31) 

with AT defined by (23). The effective property (pC,(y - l)p-‘)e,, appearing in the last 
term on the right-hand side of (30) is related to A,, and the expression for evaluating 
it is obtained by replacing 1-r in (22) by A,. 

The average heat flux amplitude is written as 

(32) 

with the effective conductivity 

ti, = ti[ + $6, (Kp - q) ) (33) 

where the coefficient A, is the ratio of the average temperature gradient amplitude 
inside the particles to that in the suspension, i.e. 

(34) 

In summary, the continuity, momentum, and energy equations for the suspension 
are given by (8), (18) and (30), the average stress tensor by (19) and (24), and the 
average heat flux by (32). These equations resemble the equations for the single 
phase given in # 2.1 with suitably defined effective properties of the suspension. It 
must be noted that these equations are rigorous for small-amplitude sinusoidal waves 
through any suspension. The effective properties of the suspension will be functions 
of frequency and physical properties of the two phases as well as the microstructure 
of the suspension. Note also that properties such as pc,@, the effective density to 
be used in the suspension continuity equation, will not depend only on the density 
and compressibility of the two phases but also on their thermal properties since its 
determination will require solving all the microscale equations simultaneously. 

.- 
----1 
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2.3. Wave equations ,fiw the suspension 

59 

To find an expression for the attenuation of sound waves in a suspension it is 
necessary to derive wave equations from the linearized acoustic equations for the 
suspension as was done by Epstein & Carhart (1953) for pure liquid. We shall follow 
that derivation closely here. As shown by these investigators the acoustics equations 
permit three waves: a thermal wave, a shear or rotational wave, and a compressional 
wave. The last one is the most significant as far as the attenuation of a plane acoustic 
wave is concerned. The other waves are important in determining the disturbance 
produced by a test particle in the suspension as we shall see in the next subsection. 

We decompose the average velocity amplitude in scalar and vector potentials, given 
by 

(u) = -V@ + v x A. (35) 
Since the curl of a gradient of any scalar function is zero, A can be specified to within 
a gradient of an arbitrary scalar function. To remove this arbitrariness an additional 
restriction is imposed that A be divergence free, i.e. V * A = 0. It may be noted that 
the vorticity amplitude equals -V’A. 

Introducing the decomposition in the momentum equation for the suspension (18), 
and rearranging, we obtain 

= V x [iop,,.,A - p(,V x (V x A)] (36) 

Here, we have used the vector identity V’a = V(V . a) - V x (V x a). The energy 
equation (30) becomes 

-ic0(pC,.),(T’) = K,V’( T’) + (pC,,p-‘(y - l)),,, v?@. (37) 

Both sides of (36) must vanish separately because a rotational vector field cannot 
balance an irrotational field. Hence the right-hand side being zero gives, after using 
the above-mentioned vector identity and V. A = 0, 

V2A + k,f‘,A = 0 (38) 

with k;?, = iwp,,,/pr; k,, is the effective wavenumber for shear waves through the 
suspension. 

The left-hand side of (36) being zero gives an expression for (T’) in terms of the 
velocity potential: 

(T’) = T -iwp,,,@ - 
[ {’ 

,:, VPY7e + (h + &) V’@ > I/ (p(y - l)cJ~‘)III,p. 

(39) 
Eliminating (T’) from the energy equation for the suspension (37) by substituting for 
(T’) from the above yields 

@+((E-F+G)V2@-EFV4@=0, (40) 

with 

(41) 

(42) 
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G = (pc,p-‘(7 - ‘I),., (Pb - WJW,, .’ 

Tpmd bc,,)c, 
(43) 

Equation (40) can be written in the form 

(k,'V" + 1) (k,'V'+ l)@ = 0, 

so that @ = @< + Qr with 

(V' + kf,) Qc = 0, 

(V' + k;,) @, = 0. 

(44) 

(45) 

(46) 
The effective wavenumbers for the compressional and thermal waves are given by, 
respectively, 

k,2 = ;(E -F + G) + ; ((E - F + G)2 + 4EF}“‘, (47) 

ki2 = ;(E -F + G) - ; {(E - F + G)’ + 4EF)“‘. (48) 
As mentioned earlier the compressional wavenumber is the most important one as 
far as the acoustic wave propagation of the plane wave is concerned. The imaginary 
part of k,., gives the attenuation while (u divided by the real part of k,, gives the phase 
speed. 

For future reference we note that the expression (39) for (T’) now can be written 
as 

(T’) = b,.,@, + b,,@,, (49) 
with 

b,, = T [-i<,jpP,,,#, + { ij (c’~v’je + (P,,., + ;A) k:c I I/ (P(:J - WX-‘),,,., . (50) 

The expression for h,, is similar with k,., in the above replaced by k,,. 

2.4. An r~e~tizle-tnedium~~ model 

To determine the attenuation and phase speed we must now estimate various effective 
properties of the suspensions. This requires determining five coefficients: i,,, A,,, AT, id, 
and &. Let us begin with the evaluation of 2,) which represents the ratio of average 
dilatation amplitude inside the particles to that in the suspension. This is defined by 
(1 1 ), which is equivalent to 

Here, we have introduced a conditionally averaged field. Thus, (u)(x~x~) is the 
ensemble-averaged velocity amplitude at point x given a particle centred at xl. 
P(xl) is the probability density for finding a particle with its centre in the vicinity 
of xl. For uniform, monodisperse suspensions P(x,) = n = 34/(4na’), n being the 
number density of the particles and d, the particle volume fraction. 

We shall use an effective-medium approximation for determining the conditionally 
averaged fields: and hence, the integrals such as the one appearing on the right-hand 
side of (51). All effective-medium approximations must satisfy the criterion that far 
from the test particle, i.e. for IX - xl 1 -+ z, the conditionally averaged fields such as 
(u)(x~xl) must approach the corresponding unconditionally averaged fields such as 
(U)(X). On the other hand, for Ix - x1 1 d a, i.e. for a point inside the test particle, 
the conditionally averaged fields must satisfy the equations governing the particle 
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phase. The simplest kind of effective medium approximation then assumes that the 
conditionally averaged equation satisfies the suspending fluid equations for a < r < R 
and the unconditionally averaged equations for the suspension for r > R. Here, 
r E Ix - XI / is the distance from the centre of the particle. Different effective-medium 
approximations differ in their choice of R. Some investigators choose R = a which 
eliminates the fluid region altogether. This makes the subsequent analysis very simple 
but, unfortunately, the estimates obtained with R = a are typically inferior, and in 
some cases unphysical. For example, it may yield negative effective properties at high 
volume fractions. Other investigators choose R = a4-‘i3 with the incorrect reasoning 
that the volumes occupied by the particle and fluid for r .< R must be proportional 
to the volume fractions of the two phases. In the present study we shall choose R to 
be given by 

(52) 

with S(0) the zero-wavenumber limit of the suspension structure factor defined by 

. S(0) = .! [PW) - W] dr, (53) 

where P(rl0) is the probability density for finding a particle with its centre near P 

given that there is a particle with its centre at origin. Note that P(rl0) = C?(P) for 
r < 2a. The above choice of R is such that 

I 
[P(ulO) - P(O)]dr = 

I’ 
P(O)dr. (54) 

. r32u * K<r<2a 

In other words, the excess particle density outside the exclusion region in a suspension 
is distributed over a distance r ranging from R to 2a in the effective medium. 

The structure factor of the suspension can be determined experimentally by a light- 
scattering technique but in the absence of such information one may choose S(0) 
to correspond to that of a hard-sphere molecular system for which the well-known 
CarnahanStarling approximation yields quite accurate estimates of the structure 
factor as a function of the volume fraction: 

(55) 

The effective-medium radius R based on S(0) was first introduced by Dodd et al. 
(1995) who compared the results of rigorous multiparticle interactions for determining 
the short-time self- and gradient-diffusivity of proteins in bilipid membranes with those 
obtained by the effective-medium approximation and found a very good agreement 
between the two. In the problems concerned with determining the collective mobility 
or the sedimentation velocity, where each particle is acted upon with a constant force, 
it was shown in MO & Sangani (1994) that the conditionally averaged velocity has 
the correct leading-order behaviour at large r only when R is chosen according to 
(52). 

For small volume fractions, S(0) given by (55) behaves as 1 - 84 + 0(42), and 
R + 2a. Thus, in ‘well-stirred’ dilute random suspensions the effective medium begins 
at r = 2a according to (52) and the fluid region a < r < 2a corresponds to the 
excluded-volume region. Note that the more usual choice R = a@‘13 would, on the 
other hand, suggest that the effective medium begins at a very large distance from the 
test particle in a dilute suspension, which is unphysical except for the situations such 



62 P. D. M. Spelt and others 

as dilute periodic or ‘well-separated’ random suspensions defined by Jeffrey (1973) 
(For such arrays S(0) is small when 4 is small and (52) also gives R/a = O(c#-‘l’).) 
Thus it is not surprising that R based on (52) will give better estimates of the effective 
properites at small to moderate volume fractions compared to those obtained with 
R = a@‘j3. Indeed, Sangani & MO (1997) have shown that the coefficients of 0(4*) 
corrections to the effective conductivity and elasticity obtained using (52) are much 
closer to the rigorous results for these coefficients obtained by detailed pair interaction 
calculations than those obtained with R = a$-‘/3. 

Before we close this brief review of effective-medium approximations, we should 
perhaps note here one more class of effective-medium approximations made in the 
literature. These involve immersing a pair of particles in the effective medium. Ex- 
amples are the calculations by Kim & Russel (1985) who estimated the permeability 
of a fixed bed of particles and Ju & Chen (1994)‘s calculations for the effective 
viscosity and elasticity of suspensions with a hard-sphere spatial distribution. These 
calculations generally require far greater effort - comparable to direct multiparticle 
calculations - and do not necessarily yield superior estimates compared with the sim- 
ple approximations based on a single particle. On the other hand, the single-particle 
approximations will be inadequate for the suspension problems in which the changes 
in microstructure due to imposed flow and their effects in turn on the suspension 
properties must be addressed. 

Returning now to the problem of estimating the coefficients i,, etc. using the 
effective-medium model consisting of a particle-fluid assembly of radius R immersed 
in a medium with the effective properties of the suspension, we write the velocity inside 
the test particle in terms of scalar and vector potentials as in the previous subsection. 
For the plane wave travelling along the xl-axis with (u)(x) = -ik,., exp(ik,, * x) we 
have, for lx - XI 1 d a, 

@c,p(xIxi) = exp(ik,, * x1) 2 i”(2n + l&,,P&)j,(k,.,r), 
n=O 

(56) 

@,,,(x(xi) = exp(ik,,, . xi) 2 i”(2n + l)BpnP&)jn(ktpr), (57) 
n=O 

&(x1x,) = exp(ik,., * x1) e i”(2n + l)C,,Pi(p)j,(k,,r), (58) 
n=O 

where r = Ix - x11, ,U = cost?, 8 being the angle between x - x1 and k,,, j, is the 
spherical Bessel function of both the first kind (regular at I” = 0), P, is the Legendre 
polynomial of degree n, and P,,’ is the associated Legendre polynomial of degree y1 
and order 1. A, is the only non-zero (azimuthal) component of A. 

Similar expressions can be written for a < r < R for which the relevant wavenum- 
bers in the expressions for @(.I, Qt,, A, are, respectively, k,.l, k,l, and k,s,. The spherical 
harmonics of both the first kind and second kind (corresponding to waves emanating 
from r = 0) must be included in the expression. This leads to a set of six unknowns for 
each mode n describing the motion in the liquid shell. Finally, for Y > R, the potentials 
consist of the plane wave corresponding to the unconditional motion plus outgoing 
waves with wavenumbers k,.,, kt,, and k,,. Thus, a total of 12 unknowns are needed 
in describing the motion for each mode ~1. These are determined from the boundary 
conditions of continuity of velocity, traction, temperature, and heat flux amplitudes at 
r = a and r = R. Note that the conditional density and temperature amplitudes can 
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be determined from the expressions for QC, Qr, and A using the expressions given in 
the previous subsection. We keep a total of N modes (typical calculation used N = 5) 
and solve the resulting 12N equations numerically. 

.- We return now to the calculation of ii,. We use V * up = -V’@, = k:,,Qcp + k&Qtp 
to convert the integral in (51) to integrals over @,,. Let us introduce a coefficient Q 
given by 

+I~~@&) = 
.I’ 

~~,(xlxl)P(xl)dl/(xl). (59) 
lx--XI l<a 

Similarly, a coefficient qt is introduced with @JxIxi) in the above replaced by 
@,,,(x(x~). The coefficient A,) is related to these two coefficients by 

Z(f‘,/$ = Z,z,flc + z~pf~p. (60) 

The integration in (59) must be carried out over all x1 such that /x - x1 / d a. To 
convert this to an integration over r we use the identity 

exp [ik,., * xi] = exp [ik,., * x] exp [-irk,.,p] 
‘X 

= exp [ik,., - x] c i”(-1)“(2m + l)j,(k,,,r)P,,(p). 
nz=O 

(61) 

Now using P(x,) = ~1, substituting for GC,, from (56) into (59), making use of the 
above identity, and carrying out the integration, we obtain 

“I< = ;2- - $ k(2n + l)A,, [z,.,jlI-,(=,,p)jn(z~p) - z,.,j,,(z,,,)jn-I(zce)] , (62) "& 'P II=0 

where zCp = kcpa and z,,, = kc,u. In the above expression jji should be taken to 
be COS(Z)/Z. In deriving the above expression use has been made of the identity 
(Gradshteyn & Ryzhik 19944note that there is a sign error in their 5.54( 1)) 

(63) 

(recall that j,(z) = (~/~z)‘~‘J,+~~~(z)). 
The expression for q, is similar to (61) with A,,? in that expression replaced by BP, 

and zCp by z(,,. Now A,, can be evaluated by substituting for vC and qr in (60). 
The coefficient AT, which represents the ratio of average temperature amplitude 

inside the test particle to that in the suspension, is also related to ~1~ and qt. Inside the 
particle the temperature amplitude is a linear combination of the potentials as given 
by (Ti)(x]xi) = b,,,,Qc.,, + b,,@,,, where b,., and b,, are given by expressions similar to 
that for b,, given earlier (cf. (50)). N ow, since the unconditionally averaged thermal 
potential, Qt(x), is zero, the average temperature amplitude is given by (T’)(x) = b,.,@,., 
and therefore 

I-T = (bcplbw) ‘I< + (h,lb,.,) rlt. (64) 

The other 1, coefficients can be evaluated in a similar manner and are inter- 
connected. To determine &., we need to calculate the average of the xl-component of 
the velocity amplitude inside the test particle at x1. Decomposing this velocity into 

-__. . . 
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three parts corresponding to contributions from the three potentials, we write 

i”,, = hz, a4c +A> +A& (65) 

where 2: and JUf are the irrotational and rotational field contributions, respectively: 
It can be shown that 

(66) 

The expression for ;1: is similar with qc, z~,,, and A,, in the above expression replaced 
by, respectively, yt, ztp, and B,,l. In deriving (66) use has been made of (61) and 

exp [-ik,, - r] V,@(v) = V, (exp [-ik,., * v] @j(r)) + ik,., exp [-ik,, * r] Q(r), (67) 

with r = x - x1. The divergence theorem is used to evaluate the integral of the first 
term on the right-hand side of (67); the second term on the right-hand side is related 
to qc in (66). 

To evaluate the rotational contribution to 2,. we use the identity 

exp [-ik,, * v] V, x A(v) = V, x [exp [-ik,, * r.] A(v)) + exp [-ik,., * r] ik,,, x A(r). (68) 

The last term on the right-hand side of the above expression does not contribute to 
the x,-component of the velocity, and the contribution from the first term can be 
readily evaluated to give 

(69) 

The result for I., can be used to determine other /z coefficients as well. Thus, it can 
be shown that 

Finally, %d, defined by 

where we again made 

n r 

A, = (b,.Jb,,,) I.: + (bt,,/b,.,) 3.f’. (70) 

(27), is written as 

&/=&+A~ +A?+)$ (71) 

use of (67), with @ replaced by K. The result for 3.9 is 

(n + L)(n + 2) n(n- 1) . 
2n + 3 

.6+2(k) -~Iij,t-~(4 

+(n+l)P+l). 
2n + 3 -.hA,) {(n + 2h+2(z,J -(n + l)j&,.,)} 

I 
(72) 

An expression for j.F is obtained from i: by replacing A,, by BP,, and z,,, by zlP. The 
contribution from A is given by 

n(n+21X n(2n + 1) 
-‘- WI+2 - ~ 2n + 3 x,, + ;-+x&-2 

(2n + 3)(2n - 1) I 

(73) 

- 
-----I 
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Polystyrene 

Density (g cm-‘) 1.055 
Thermal conductivity (J K-’ m s) 1.15 x 10-l 
Specific heat (J g-’ K) 1.19 
Thermal expansion coefficient (K-’ ) 2.04 x lop4 
Sound speed (cm SC’) 2.3 x 105 
Shear viscosity (g cm-’ s’) 
Bulk viscosity (g cm -’ s2) 
Shear rigidity (g cm-’ s’) 1.27 x;O” 

Glass Water 

2.3 1.0 
9.6 x 10-l 5.87 x lo-’ 
0.836 4.19 
3.2 x 10-h 2.04 x 10-4 
5.2 x 10’ 1.48 x 10’ 

1.01 x lo-? 
3 x 10-l 

2.8 x 10” 

Glycerol/water 

1.08 
4.5 x 10-I 
4.19 
3.22 x lO-4 
1.6 x lo5 
3X2X 10-Z 
9.6 x lop2 

TABLE 1. The values of the physical properties used in the present study 

with the short-hand notation 

XL, = -~~n(z.,,Mzc,) - ; [z,j:,(z,,,)jm(z,.,) + &&(?Yj7,j~(4] (74) 

The scheme for estimating various effective properties and attenuation is as follows: 
(i) Assume initially that the effective properties of the suspension are the same as 
that of pure liquid. (ii) Determine the coefficients Apn, Bpn, etc. by solving the twelve 
equations resulting from the application of boundary conditions at r = a and r = R 
for each mode n up to n = 5. (iii) Estimate A,,, i,,, A,., etc. using the expressions given 
in this section. (iv) Estimate the effective properties of the suspension. (v) Repeat 
steps (ii)- until all the effective properties have converged to within a specified 
limit. The attenuation of the wave is given by the imaginary part of k,.,. 

3. Comparison with known analytical results 

We shall assess the effective-medium approximation in two steps. In the first, we 
consider various limiting situations where we expect some of the effective properties 
to be dominated by multiparticle interactions in Stokes or Laplace fields for which 
rigorous results have been obtained in recent years through direct numerical solution 
of the multiparticle system with hard-sphere spatial configurations. The second step 
will be to compare the theory with the experimental data available in the literature 
and some new data generated in our laboratory. This will be done in 5 5. 

As we have seen the acoustic problem has many variables. This makes it meaningless 
to present results in terms of one or two non-dimensional numbers. We shall instead 
choose a particular solid-liquid system and then vary either the radius of the particle 
or the frequency. The relevant physical properties for glass-water and polystyrene- 
water systems to be considered in the present study are given in table 1. In some 
calculations we shall vary the thermal conductivity or density of the particles without 
varying other physical properties to explore the effect of these properties. In some 
limiting cases it may be possible to solve a simplified set of equations instead of the 
12N set of equations required by our scheme. However, since our primary purpose is 
to assess the effective-medium approximation and the computer program written for 
this purpose we use the same program in all the comparisons shown here. 

The effective viscosity of the suspension will be in general complex with the 
imaginary part multiplied by frequency being the elasticity of the suspension. Results 
of rigorous multiparticle computations are available in the literature for the case when 
inertia is negligible (Stokes flow) and a uniform strain rate is applied to suspensions 
of rigid particles in an incompressible, Newtonian fluid. The spatial distribution 
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U U.’ U./L U.3 u.4 0.3 u.6 

Volume fraction 

FIGURE 1. Ratio of effective viscosity to liquid viscosity as a function of volume fraction. Limiting 
values for wavelengths large compared to particle size and viscous boundary layers much larger 
than the particles. Solid line is theory; squares are numerical simulation results from Sangani & 
MO (1997). 

of the particles corresponded to the hard-sphere molecular systems for which S(0) 
given by (55) applies. Ladd (1990) obtained the results with volume fractions (#) 
in the range O-0.45. MO & Sangani (1994) and Sangani & MO (1997) repeated and 
confirmed his results and also obtained an additional result for 4 = 0.6. Their results 
are shown in figure 1. To see how well the effective-medium model developed in 
the present study approximates these values we must pick frequencies for which the 
quasi-steady Stokes flow approximation will be expected. The ratio of unsteady to 
viscous terms in the momentum equation for the liquid is ploa2/p,. For a = lop5 cm 
and f = w/2n = lo6 Hz this number equals 6 x 10d3 (we have taken water as 
the suspending liquid but multiplied the viscosity by 10). The wave nature of the 
governing equations depends on the ratio kcla which equals 271 times the ratio of 
particle radius to the wavelength in pure liquid. When this number is small the liquid 
may be treated as essentially incompressible. For a and f listed above, kcla for water 
equals 4.2 x 10-4. Finally, our calculations account for small deformations of the 
particles. For particles to be treated as rigid, their shear modulus ,Z divided by the 
frequency must be much larger than the viscosity of the water. At o = 106/2n; s-l, 
the ratio jI/(op,) equals 2 x lo7 and therefore the glass particles may be treated as 
rigid. 

The solid curve in figure 1 represents the estimates of the effective viscosity obtained 
by the effective medium model for the aforementioned conditions. The ratio Re&)/pr 
varies from unity to about 20 as 4 is varied from 0 to 0.6. At high volume fractions 
significant viscous dissipation occurs in the narrow gap regions between the pairs 
of particles in close proximity and this dominates the effective viscosity behaviour 
at high #. This phenomenon cannot be expected to be modelled accurately by the 
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‘“106 10’ 

Frequency (Hz) 

FIGURE 2. Real part minus its limiting value at large wavelengths (-) and minus imaginary part 
(- - -) of the ratio of effective viscosity to liquid viscosity as a function of frequency. Particle 
volume fraction is 0.3. The viscous boundary layers at the lowest frequencies are small compared 
to the particle size (at 1 MHz, (p,/(p,w’a’))“’ = 0.01). 

single-particle approximation used here and therefore the excellent agreement found 
here for C$ = 0.45 and 0.6 may be regarded as fortuitous. It should also be noted 
that the particles in highly concentrated suspensions may begin to be supported by 
the other particles through the formation of a continuous network such that the 
suspension behaves like a fluid-filled porous medium, The present analysis should not 
be applied to such suspensions. 

Figure 2 shows that the real and imaginary parts of the effective viscosity increase 
with frequency in the range where the unsteady term begins to become comparable 
to the viscous term in the liquid momentum equation. The results for the real part of 
the effective viscosity may be rationalized as follows. At relatively large frequencies 
we expect the viscous effects to be confined to small Stokes layers of thickness 
6 = O((,~,/plw)‘/~) surrounding each particle. The effective viscosity is the rate of 
energy dissipation per unit volume of the suspension divided by the square of mean 
velocity gradient 9 = O(k,.,(u)). At high frequencies the dominant contribution to 
dissipation arises from the Stokes layers whose volume per unit suspension volume 
is 0(6azn), u being the number density of particles, and the velocity gradient in 
these layers is O(pa/S). The effective viscosity must therefore roughly scale as a/8 or 
4wf hd ‘I2 for frequencies at which 6 is small compared with a. The observation that 
the real part of effective viscosity should increase with frequency as o’i2 is consistent 
with the results of figure 2. The ratio (/~~/p~oa~)‘l’ is about 0.01 for f = 1 MHz 
indicating that indeed the Stokes layers are thin at these frequencies (note that we 
have replaced ,uL by its value for water divided by 1000). 

The imaginary part of the effective viscosity is also seen to increase with increasing 
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frequency in figure 2. This elastic nature of the suspension is expected at higher 
frequencies. 

We now compare the effective-medium results for il, with the known results. Recall 
that & represents the ratio of the velocity amplitude in the particle phase to that in 
the suspension. At lower frequencies for which k,.,a is small and the scattering losses 
are small, the attenuation will be dominated by the imaginary part of iL, as suggested 
by Sangani et al. (1991) who evaluated the real and imaginary parts of &, for a special 
case when the frequency is large enough for the Stokes layers to be small compared 
with the particle radius but small enough for k,,a to be small, i.e. for the suspension 
to be essentially incompressible. We shall compare the results of effective-medium 
approximation with their results next. 

Sangani et al. gave their results in terms of added mass, Basset, and viscous drag 
coefficients. The force balance on a particle in the suspension was written as 

(F(t)) = plY(ic) + ~p,Y‘C,(ic--ti) +6a’mC,, 
.I 

t (&il)(z) dz - +6xap,Cd(u-u) 
-m vit - z 

(75) 

where F is the force on the particle, v is the velocity of the particle, C,, C,, and Cd 
are the added mass, Basset and viscous drag coefficients and V the volume of a 
particle. Dots above variables denote time derivatives. Noting that F(t) = pPY/‘ti and 
(u) = i,(u), and taking the time-dependence of variables to be e-““‘, the force balance 
(75) gives 

c, + 9QCd + 9Q2Cd = 2(p*i, - 1) 
1 - I”,, ’ 

with 52 = (&,/(yl(tia2)‘j2 and p* = pP/p,. Sangani et al.‘s analysis is valid when the 
magnitude of Q is small compared with unity, and the terms of O(Q”) or smaller are 
neglected in (76). For small R, A, can be expanded in a series 1, = )$,O) + Q$,‘) + . . 
to yield the relations 

c 2/l”‘(p* - 1) 
a 

= qp*JL$’ - 1) 
1 - $0’ -.’ 

Cb = ~ -1 

9 (1 -q2 
(77) 

The coefficients Al,‘) and ,I[,‘) were evaluated from the effective-medium theory results 
for AU at small kcla and small IQ1 by extrapolating to Q = 0 and numerically 
differentiating the results with respect to 0, respectively. Figures 3 and 4 show 
a comparison with the rigorous multiparticle calculations of Sangani et al. who 
determined C,,, C,,, and Cd as a function of 4 and p* for periodic as well as random 
arrays of spheres. The results for C, for the body-centred cubic and random arrays 
were very close to each other while that for the simple cubic arrays differed by 
about 12% at 4 = 0.5. It was also found that the dependence on p* was rather 
weak, typically variations within 5% occurred as p* was varied from zero to infinity. 
The results of Sangani et ul. shown in figures 3 and 4 correspond to p* = 0 while 
the effective-medium results correspond to glass particles in water with p* = 2.55. 
We see an excellent agreement between the added mass coefficient obtained by 
the effective-medium approximation and for random or body-centred cubic arrays. 
The effective-medium approximation for Cb deviates systematically from the random 
arrays result with the maximum deviation of about 20% at 4 = 0.5. The theory in 
this case is much closer to the results for the simple cubic arrays. 

Next we consider the case when Q is very large, i.e. frequencies at which the 

----- _.“. I- --.- .._. - --. . .-- --_- 
-T- 
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Volume fraction 

FIGURE 3. Added mass coefficient C, as a function of volume fraction. Solid line is the theoretical 
result for wavelengths and viscous boundary layers much larger than particle size. Broken line and 
squares are the random array and simple cubic array results of Sangani et (II. (1991). Particle to 
liquid density ratio is 2.55. 

viscous drag coefficient makes the leading contribution to A,. The results in this 
case can be compared with the results of multiparticle Stokes flow calculations by 
Ladd (1990) and MO & Sangani (1994). Two kinds of results are available in the 
Stokes flow literature. The first is the hindrance factor in sedimentation in which the 
average velocity of the particles is determined for the case when the forces acting 
on all the particles are the same. The second is the calculation of the permeability 
of a fixed bed of particles. There the average force on the particles is calculated for 
particles that all have the same (zero) velocity, different from the mean velocity of 
the suspension. Neither situation applies to oscillatory flows but one expects that 
the results for the fixed bed resistivity would be most applicable for large p* and 
those of the hindrance factor for very small p*. Figure 5 compares the results of 
Ladd and MO & Sangani for these two quantities with the results obtained using 
the effective-medium approximation with p’ = 10. These results were obtained with 
Is21 = 22 and k,,a = 0.001. The results for the sedimentation-hindrance factor were 
obtained only up to 4 = 0.45 in the present investigation while MO & Sangani had 
obtained an additional value for the fixed bed resistivity at 4 = 0.6. Their result for 
4 = 0.6 was in excellent agreement with the well-known Carman-Kozney correlation. 
We see that at least up to 4 = 0.45, the hindrance factor and the fixed-bed resistivity 
are not too different from each other, and that the effective-medium results are in 
excellent agreement for the entire range of 4. 

Next, we compare the results for the effective conductivity. When k,,a is small the 
viscous and thermal effects contribute most to the total attenuation. When the density 
ratio is close to unity the translational oscillations and hence viscous attenuation are 
small and the thermal effects become the primary source of attenuation. The effective 



70 P. D. M. Spelt and others 

Volume fraction 

FIGURE 4. Basset coefficient C,, as a function of volume fraction. Solid line is the theoretical result for 
wavelengths and viscous boundary layers much larger than particle size. Broken line and squares 
are the random array and simple cubic array results of Sangani et al. (1991). Particle to liquid 
density ratio is 2.55. 

Volume fraction 

FIGURE 5. Cd as a function of volume fraction. Lines are theoretical results obtained for wavelengths 
much larger and viscous boundary layers much smaller than particle size. Squares are numerical 
simulation results for the fixed-bed resistivity by MO & Sangani (1994), circles are numerical 
simulation results for the hindrance factor by Ladd (1990). 
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Volume fraction 

FIGURE 6. Ratio of effective conductivity to liquid conductivity as a function of volume fraction. 
Lines are theory for wavelengths large compared to particle size, symbols are experimental data 
from Turner (1976). Results are shown for ~,/ti, = 0.01 (+), 0.51 (A), 10.8 (0) and 160 (0). 

conductivity as a function of $J and the conductivity ratio tiip/rcl was determined 
experimentally by Turner (1976) who used liquid fluidized beds of nearly monodisperse 
spheres. Sangani & Yao (1988) and Bonnecaze & Brady (1991) have carried out 
multiparticle calculations for the same cases and found generally good agreement 
between the simulations results and the experimental data of Turner. Figure 6 shows 
the comparison between the effective-medium approximation and the data of Turner. 
Calculations were made with the polystyreneewater system with f = 1 MHz for which 
kc/a equals 4.2 x lop4 and the ratio of unsteady term to the steady conduction term 
P1CP,loa2/kl equals 0.05. The thermal conductivity of the particles was varied keeping 
other parameters fixed to determine the effect of conductivity ratio. Agreement is 
generally very good except for the highest particle-to-liquid conductivity ratio of 
160 and 4 = 0.5 for which the effective-medium approximation underpredicts the 
effective conductivity by about 30%. At such high conductivity ratios the narrow 
gap regions between pairs of particles in dense suspensions contribute siginificantly 
to the overall heat flux and this is not captured accurately by the effective-medium 
approximation. The spatial distribution of the particles could also affect significantly 
the results at high 4. For low-conductivity particles we see an excellent agreement 
between the experiments and the effective-medium approximation. It may be noted 
that the well-known Maxwell relation 

& 1+2a4 -=- 
1 -aqi (78) 

k’l 

with & = (JC~ - rcI)/(rcP + 2~~) also gives accurate estimates of the effective conductivity 
for rcP/rc, = 0. 

Figure 7 shows the results for the real and imaginary parts of the effective con- 
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FIGURE 7. Real and imaginary part of the ratio of effective conductivity to liquid conductivity as 
functions of frequency. Particle volume fraction is 0.3; k,,u = 4 x lop2 at 10 MHz for all cases. Solid 
line (real part) and dashed line (imaginary part), K~/K, = 2 x 10-3; dashed-dotted line (real part) 
and dotted line (imaginary part), R”,/K~ = 20. 

ductivity as a function of frequency for two particle-to-liquid conductivity ratios. For 
K~/K, > 1 the real part of the conductivity is seen to increase with the frequency. 
This result is similar to the one discussed for the effective viscosity (cf. figure 2). 
The opposite is true for the particles whose conductivity is smaller than the fluid 
conducitivity. The imaginary part of the conductivity is seen to reach a maximum at 
frequencies for which the thermal layer thickness is comparable to particle radius. 

In summary, we have shown in this section that the effective-medium approximation 
yields very accurate estimates of the coefficients & (effective viscosity), Ati (added mass, 
Basset force, and viscous drag), and d, (conductivity) for the monodisperse, random 
suspensions in the limits in which the results of exact multiparticle interactions are 
available. 

The two coefficients for which no exact results are available are 1, and llr but 
the computed results for these coefficients show expected trends. For example, figure 
8 shows results for the real and imaginary parts of iT which represents the ratio 
of average temperature amplitude inside the particles to that in the suspension. 
The results are shown for polystyrene-water mixture with a = 0.11 pm, a system 
which was studied by Allegra & Hawley (1972). When the thermal diffusion length, 
(%l~P,G,p) 3 ‘I2 becomes much larger than the particle radius, the temperature inside 
the particle will be the same as the suspension temperature and AT will approach 
unity. This is the situation for frequencies less than 1 MHz. At frequencies that are 
large enough so that the thermal layer inside the particles is thin compared with 
the radius but small enough to keep the wavelength large compared with the radius, 
we expect the particle temperature amplitude to be governed by the temparature 
variations in the adiabatic case. A simple calculation shows that in this limit A7 and 
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FIGURE 8. Real and imaginary parts of ;LT as a function of frequency for polystyrene particles 
(0.11 pm radius) in water at 0.3 volume fraction. Solid line (real part) and dashed line (imaginary 
part) are the full results; the dashed-dotted line (real part) and the dotted line (imaginary part) are 
the adiabatic result (79). 

R, are related by 

(79) 

The dot-and-dashed curve in figure 8 is obtained by first computing $ using the 
effective-medium approximation and then using (79) to estimate AT. We see that at 
high frequencies the result for llT obtained in this manner approaches that obtained 
from the direct evaluation using the effective-medium approximation, The imaginary 
part of AT is seen to vanish in the limits of high and low frequencies as one approaches, 
respectively, the adiabatic and isothermal limits. 

All the results discussed in this section correspond to the limit of small kc/a for 
which the scattering losses are insignificant. Since all indications suggest that the 
effective-medium approximation is very accurate, we expect the theory to predict the 
thermal and viscous attenuations for small k,.,a very accurately. Rigorous calculations 
are not available for k,.,a = O(1) and we shall mostly depend on the experimental 
data to assess the effective-medium theory in this regime. 

4. Experimental set-up 

The experimental set-up for measuring attenuation is shown in figure 9. The 
suspension is hand-stirred in a vessel with transmitting and receiving transducers 
mounted flush with the inner walls. The distance between the transducers in a typical 
vessel was 5 cm, the width and the height of the vessel being 8 and 13 cm, respectively. 
In dense suspensions for which greater attenuation is expected, the experiments were 
carried out with smaller vessels with the acoustic path lengths as small as 1.3 cm. 
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FIGURE 9. The schematic of the experimental set-up. 

The transducers were of piezoelectric videoscan immersion type manufactured by 
Panametrics Inc. To cover a relatively broad range of frequencies, we used transducers 
with centre frequencies of 1.0, 2.25, 5.0, 7.5 and 10.0 MHz. The first two were 1.3 cm 
in radius while the other two were 1 cm in radius. 

A Matec TB-1000 digital synthesizer card installed in a desk-top computer was used 
to generate monochromatic tonebursts that propagated through the suspension and 
were received by the receiving transducer. The signal was then sent to a LeCroy Model 
9310A digital oscilloscope where its amplitude was measured. Attenuation data were 
obtained for six to eight frequencies for each transducer pair. Thus, the measurements 
were typically carried out at frequencies between 1 and 12 MHz. The suspension was 
hand-stirred before each measurement. To calculate the excess attenuation caused by 
the presence of particles, we also measured the amplitude of the signal received by 
the transducer for the pure liquid case. The excess attenuation for a given particle 
concentration is then determined using 

where V,,, and I’, are the voltage amplitudes of the received signals in the mixture 
and pure liquid, respectively, and L is the distance between the transducers. 

Further details about the experimental set-up can be found in Norato (1999). 

5. Comparison with experiments 

Several experimental results have been presented for dense slurries in the literature. 
In this section we shall compare with these data as well as with results obtained in our 
laboratory. Allegra & Hawley (1972) measured attenuation for nearly monodisperse 
polystyrene particles of radius 0.11 urn in water. The acoustic frequency range used by 
these investigators was roughly 5-50MHz. This corresponds to the non-dimensional 
wavenumbers kc/a in the range of 0.002-0.02. At such small wavenumbers the scat- 
tering losses are negligible, and since the density of polystyrene (1.07 gem-3) is close 
to that of water, the translational oscillations of the particles and hence the vis- 
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cous attenuation are negligible. Thus, the thermal effects dominate the attenuation 
in Allegra & Hawley’s experiments. The difference in thermal expansion coefficients 
between the particles and the suspending liquid causes the temperature amplitude 
inside the particles to differ from that in the liquid. This causes a heat flux through 
the surface of the particles that is out of phase with the sound wave and leads to 
thermal attenuation. 

Allegra & Hawley showed that when the thermal boundary layers as well as the 
wavelength are much greater than the particle radius and the suspension is dilute (i.e. 
when til/(p,CP,lwaz) >> 1, /+,a << 1, and 4 << 1 ), the attenuation is given by 

The attenuation increases as f2 in this limit. On the other hand, when the boundary 
layers are much smaller than the particles while k,,a is still small, their analysis 
predicts that the attenuation will increase with frequency as f”‘. 

Allegra & Hawley (1972) compared their data with a theory for dilute suspensions 
and found good agreement between the two for dilute suspensions. Since the effective- 
medium theory reduces to their theory for dilute suspensions as 4 + 0, we also expect 
a very good agreement at small volume fractions. Allegra & Hawley compared the 
two in several of their figures but did not specify the volume fraction of the particles 
used in obtaining the data except for one in which they show the attenuation as 
a function of 4 at several frequencies. We show their data for the lowest volume 
fraction, 4 = 0.058, in figure 10. The asymptotic expression (81) is also shown in the 
figure; it is seen that the experiments were carried out at frequencies for which the 
thermal layers are comparable to particle radius. 

As noted by Allegra & Hawley, the attenuation is sensitive to the thermal properties 
of polystyrene particles. If we take these properties to be the same as given by these 
investigators and reported in table 1, we find that the predicted attenuation is slightly 
greater than the experimental values as indicated by the solid line in figure 10. 
However, there is some uncertainty about the values of the physical properties as 
given by Allegra & Hawley. In their paper they show that their results depend 
quite strongly on the equilibrium temperature - because the physical properties do 
- and that there is a significant discrepancy between the theory and experiments 
in this temperature dependence. Especially, the attenuation at temperatures < 20” C 
is overpredicted. Allegra & Hawley mentioned that the factor flP/(p,,C,,.,,) (cf. (81)) 
introduces the uncertainty. To be able to have a fair comparison between the dense 
slurry data and the effective-medium theory we have therefore changed the value of 
p for polystyrene somewhat (decreased by 11%) to get the best fit at low volume 
fractions, which is seen to be excellent. 

Figure 11 compares the effective-medium approximations with the attenuation data 
as a function of volume fraction of the particles at different frequencies. We see an 
excellent agreement at all volume fractions. (Slight differences seen are within the 
error introduced in reading the data from Allegra & Hawley’s figures or due to small 
temperature variations that could occur during the experiments.) Note that simply 
using the dilute theory of Allegra & Hawley (1972) would have overpredicted the 
attenuations at 0.5 volume fraction by as much as 50%. 

The scattering attenuation was small in the experiments by Allegra & Hawley 
(1972) since /+,a for their experiments was much less than unity. To extend the range 
of &la over which the theory can be tested against experiments we have conducted 
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FIGURE 10. Comparison with experimental dilute-slurry results by Allegra & Hawley (1972) for the 
attenuation in a mixture of polystyrene particles of 0.11 pm radius in water at 0.05 volume fraction. 
Squares are experiments, solid line is the theoretical result. The broken line is the theoretical result 
when the thermal expansion coefficient is changed from 2.04 x 10P4 to 1.82 x lo-” K-‘. The dotted 
line is the asymptotic result (81). 
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FIGURE 11. Comparison with experimental dense-slurry results by Allegra & Hawley (1972) for 
the attenuation for polystyrene particles of 0.11 Frn at different frequencies. LI, 3 MHz; 0, 9 MHz; 
+. 15 MHz; x, 21 MHz; q , 27 MHz and V, 39 MHz. 
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FIGURE 12. Experimental and theoretical results for the attenuation in a mixture of polystyrene 
particles (mean radius 79 + 3 urn and 1.8 urn standard deviation) in water at 0.05 volume fraction. 
Circles are experiments, solid and broken lines are the theory for monodisperse particles of 79 urn 
and 77 urn radius, respectively. 

experiments for much larger polystyrene particles. The particles were specified by 
the manufacturer to have a mean radius of 79 f 3 urn with a standard deviation 
of 1.8 urn; kcla in our experiments varied between 0.5 and 2.6. The comparison 
between the theory and experiments is shown in figure 12. At small frequencies (or 
small k,,la) the attenuation due to scattering is expected to increase in proportion 
to f4. This behaviour is observed roughly for k,,a < 1.3. At higher frequencies the 
resonance effects due to various shape deformations of the particles become important 
as discussed in more detail by Spelt et al. (1999) who examined the problem of 
determining size distributions for dilute suspensions. The first three peaks seen in 
figure 12 correspond to the resonances in IZ = 2,3, and 4 modes (cf. (56)). 

As we can see from figure 12, the agreement between the theory and the experiments 
is very good. A possible explanation for the slight differences observed near the 
resonance peaks is the uncertainty in the mean particle size as specified by the 
manufacturer. Changing the size of the particles from 79 to 77um radius (which is 
within the specifications) is seen in figure 12 to improve the comparison. Alternatively, 
an excellent agreement can also be observed by accounting for the size distribution 
of particles. 

Most of the data shown in figure 12 were taken for a suspension with 4 = 0.05. 
High attenuation near the resonance peaks is not measurable and this explains the 
gaps seen in the data near those frequencies. We repeated some experiments with 
r/~ = 0.025 and with smaller vessels which decreased the acoustic path length between 
the two transducers and obtained a few data points near the resonances but additional 
measurements with very low volume fractions appeared unnecessary. 

Since the volume fraction used in this measurement is rather small (4 = 0.05), an 



78 P. D. M. Spelt and others 

excellent comparison between the theory and experiments should not be regarded 
as a true test of the effective-medium approximation. Rather, it shows that the data 
taken in our laboratory are reliable and that our analysis and the computer program 
for the effective-medium approximation gives correct results over a wide range of 
frequencies. To test the effective-medium theory higher volume fractions must be used 
but we encounter two problems. First, the monodisperse polystyrene particles in this 
size range are extremely expensive and secondly the range of frequencies for which 
the attenuation at higher volume fractions would be measurable will be rather narrow 
to provide a good test of the effective-medium approximation. 

Experiments on dense slurries in the frequency range that is dominated by scattering 
effects before the resonance peaks were done by Atkinson (1991) and Atkinson & 
Kytiimaa (1992). We have compared their data for the dilute suspensions with the 
present theory and found that, although the agreement at the lower half of their 
frequency range is reasonable, at higher frequencies the experimental results for the 
attenuation were consistently lower than the theoretical results (at 0.045 volume 
fraction and 0.7MHz frequency the difference was a factor two). It was found that 
the differences could not be resolved by changing the physical properties, the size of 
the particles or by allowing for a size distribution of the particles. Since we do not 
see any reason for the theory to be inapplicable at such low volume fractions, we did 
not pursue further comparison at higher volume fractions. Instead, we shall compare 
the theory with the experiments we have conducted for the glass-water system. 

Since the large glass particles are difficult to keep suspended in water, we added 
glycerol to increase the viscosity and density of the suspending medium. Soda-lime 
glass particles were used. The volume fraction size distribution was measured using a 
light scattering instrument and gave a mean radius of 63 urn and a standard deviation 
of 8.5 pm (the volume fraction distribution is related to the size distribution P(a) by 
$(a) = (4/3)xa’P(a)). The distribution is shown in figure 13 together with a fit used 
in calculations discussed below (a lognormal size distribution for P(a) was used). The 
instrument could measure the particle radius up to about 240um. It was estimated 
that about 1.5% of the particles by volume had radius that exceeded this value. 

We first discuss results for a dilute suspension. Figure 14 shows the attenuation as 
a function of frequency at 4 = 0.05. At the frequency of 1 MHz, the non-dimensional 
wavenumber kcla based on mean radius is about 0.25. Thus, throughout the frequency 
range we expect the scattering losses to be the most significant. At low frequencies, 
the attenuation is approximately proportional to f4. Note that at very low frequencies 
the viscous attenuation will become more significant, and if the Stokes layers are 
small compared with the particle radius, then the attenuation will be proportional 
tof . ‘j* At higher frequencies the attenuation appears to level off, unlike the case 
of polystyrene particles which exhibited distinct resonance peaks. This qualitative 
difference arises due to different shear moduli of glass and polystyrene (Spelt et al 
1999). 

The solid curve in figure 14 is obtained by using the size distribution shown in 
figure 13 which ignores the particles larger than 240 urn. We see that the agreement 
between the theory and the experiments is very good at frequencies above 2MHz. 
Significant discrepancy exists, however, at lower frequencies. This may be due to the 
presence of larger particles. If we assume that, in addition to the size distribution 
shown in figure 14 we had 1.5% by volume of particles with a radius of 540 urn, 
then we obtain the dashed curve shown in figure 14. These larger particles contribute 
most to the attenuation for smaller frequencies. Alternatively, it is possible that some 
of the assumed physical properties of the water-glycerol system (cf. table 1) may 
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FIGURE 13. Volume-fraction distribution of the glass particles used in figure 14. Circles are 
measurements, the solid line is a fit using a log-normal size distribution. 

be inaccurate and this may lead to the observed discrepancy at lower frequencies. 
The density and viscosity were measured in our laboratory but the other properties 
(sound speed and attenuation) were estimated using a volume-average mixture rule. 
In view of these uncertainties we shall only compare the experimental data for dense 
suspensions for frequencies greater than 2 MHz where the agreement for dilute 
suspensions is good. 

Since the size distribution is somewhat broad, we must modify the effective-medium 
theory to account for polydispersity. The coefficients &, etc. to be used in determining 
the effective properties of the suspension are now replaced by CE, 4(ai)/l,(ai), etc. 
where M is the number of particle size bins. Here, lP(ai) represents the ratio of 
average dilatation amplitude inside the particle of radius ai to that in the suspension. 
To estimate such coefficients we assume that the particle of radius ai is surrounded 
by the liquid up to r = Ri and the effective medium for r > Ri. We take Ri/ai to be 
the same for all particle sizes and given by the same expression as in the case of 
a monodisperse suspension (cf. (52)). This is probably not a good estimate of Rj/ai 
since one would expect &/a; for larger particles to be smaller than for monodisperse 
suspensions as the volume exclusion for larger particles is smaller when smaller 
particles are present in the suspension. However, since there are no known analytical, 
rigorous solutions for polydisperse suspensions, a more complicated scheme for 
estimating Ri/ai would be difficult to justify. 

The dense-slurry data for the glass-water/glycerol suspensions are shown in fig- 
ure 15. The frequency range is 2.5-5 MHz for which the comparison at C#I = 0.05 
shown in figure 14 was good. The agreement is seen to be very good up to C$ = 0.3. 
At higher volume fractions, however, we observe significant discrepancy. The theory 
predicts the attenuation to be a monotonically increasing function of 4 while the 
experiments exhibit maxima near r$ = 0.3. The measurements were made two or 
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FIGURE 14. Experimental and theoretical results for the attenuation in a mixture of glass particles 
(mean radius 63 urn and 8.5 pm standard deviation) in glycerol at 0.05 volume fraction. Circles are 
experiments, solid and broken lines are the theoretical predictions. 

Volume fraction 

FIGURE 15. Experimental and theoretical results for the attenuation as a function of volume fraction 
for different frequencies, using the same glass particles and glycerol as in figure 11. Symbols are 
experiments, solid lines theory for monodisperse particles and broken lines theory for polysdisperse 
particles. A, 25MHz; 0, 3.5MHz; +: 4MHz; x, 4.5MHz; 0, 5MHz. 
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FIGURE 16. Liquid-shell to particle radius ratio as a function of volume fraction. Solid line is (52). 
Symbols are the values that would have to be used to get very good agreement with the experimental 
data shown in figure 15 at high volume fractions. 0, 2.5 MHz data; +, 5 MHz. 

three times for each f at 4 = 0.3 and 0.5. At smaller volume fractions the data 
were quite reproducible and the error bars were typically smaller than the size of 
the symbols shown in figure 15. However, larger variations were observed at higher 
volume fractions as exemplified by the vertical bars around the data points. Although 
these error bars are quite significant, we see that the theory consistently overpredicts 
the attenuation for C#J > 0.3. 

As mentioned earlier, there is some concern about the proper choice of Ri/ai to 
be used in the effective-medium approximations for polydisperse suspensions. To see 
how the choice of Ri/ai affects the results, we calculated the values of Ri/a; (assumed 
to be independent of the particle radius) at which the theory and experiments would 
coincide for 4 3 0.3 at 2.5 and 5 MHz. The results are shown in figure 16. The solid 
line in that figure corresponds to the value used in the results presented in figure 15. 
We see that only slight changes in R/a are needed to make the theory predictions 
coincide with the experimental data. In other words, the results for the attenuation 
are very sensitive to the choice of R/a in very dense suspensions. Finally, the fact that 
the scatter in the attenuation data is significant at higher volume fractions suggests 
that the attenuation might be quite sensitive to the manner in which the suspension 
is stirred. As noted earlier we used hand-stirring just before taking the attenuation 
measurement. Perhaps using a fluidized bed would have produced different attenuation 
data at high volume fractions. 

The comparisons shown so far were dominated by the thermal and scattering effects. 
Experiments in which the viscous losses are significant were carried out by Hampton 
(1967) but those were for clay particles which are highly non-spherical. To assess the 
theory for the viscous regime, we have measured attenuation for a suspension of small 
glass particles in water. The size distribution for these particles is shown in figure 
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FIGURE 17. Volume-fraction distribution of the glass particles used in figure 18. Circles are 
measurements, the solid line is a fit using a log-normal size distribution. 

17 together with the fit used in the calculations. The mean radius is 15 urn and the 
standard deviation is 3.5 urn. These particles have a very small terminal velocity and 
it is not necessary to add glycerol to keep them suspended. For the frequency range 
over which we could measure attenuation, i.e. for 0.7-lOMHz, the non-dimensional 
wavenumber kCla varies from 0.03 to 0.5. The particle-to-liquid (pure water) density 
ratio in this case is 2.55, and the viscous attenuation dominates the lower part of 
the frequency range, while the scattering attenuation becomes important at higher 
frequencies. 

The results for volume fractions 0.05,0.2,0.3, and 0.4 are shown in figure 18. We see 
that the measured attenuation is proportional to f ‘1’ in the viscous range, which is to 
be expected for the case when the Stokes layers are thin compared with the particle 
radius (see, e.g., Allegra & Hawley 1972). We see an excellent agreement between 
the theory and experiments. It may be noted that the attenuation does not vary 
linearly with the volume fraction, indicating that the effective-medium approximation 
represents a significant improvement over the dilute theory. We also note that, unlike 
the case of larger particles, the attenuation increases monotonically with the volume 
fraction for the entire range of frequencies over which the measurements are made. 

6. Phase speed 

While the physics of acoustics is very interesting, it appears that the determination 
of the particle volume fraction from acoustic measurements will be, in general, 
difficult because of the sensitive dependence of the acoustics on physical properties 
of the particles and liquid and the particle size distribution. Since the phase speed is 
relatively less sensitive to the particle size, it might be more advantageous to measure 
the phase speed. The scattering regime can lead to large attenuation and resonance 
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FIGURE 18. Experimental and theoretical results for the attenuation as a function of frequency at 
different volume fractions, using glass particles in water. Symbols are experiments, solid lines are 
theory. Volume fractions are A, 0.05; 0. 0.2; +, 0.3 and x, 0.4. 

behaviour sensitive to the mechanical properties of particles. The phase speed near 
the resonance frequencies can vary significantly. Thus, it is desirable to carry out 
measurements at low frequencies where the scattering effects will be insignificant. 

When kc,a is small the phase speed can be measured for cases for which the Stokes 
layers are much smaller than the particle radius. In this limit the speed is nearly 
independent of the particle radius. Figure 19 shows the phase speed as a function of 
volume fraction in this limit for a glass-water system with two different sizes. Note 
that the speed is essentially the same for both particle sizes. The attenuation under 
these conditions would be proportional to a -’ (Allegra & Hawley 1972). Figure 19 
also shows results for the case when the Stokes layers are much thicker than the 
particle radius. Once again, in this limit the phase speed is nearly independent of the 
particle radius while the attenuation would vary significantly with the particle radius 
as a2. Note that the phase speed as a function of volume fraction goes through a 
minimum in the low-frequency limit. The monotonic increase at high frequency might 
be more suitable for determining the volume fraction. Thus, the ideal frequency for 
measuring the phase speed corresponds to the one for which the Stokes layers are 
thin compared with the particle radius and kC,a is small. 

7. Summary 

We have derived equations for describing small-amplitude acoustic wave propa- 
gation through a suspension. The equations are similar to those for a single-phase 
medium but require closures for estimating the effective properties of the suspension. 
We used an effective-medium model to solve for the conditionally averaged temper- 
ature, density, and velocity fields inside a test particle, and estimated thereby the 
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FIGURE 19. Wave speed as a function of volume fraction for two limiting cases. Solid line, 
a2~p,/pl = 3 x lo3 and k,ia = 8 x 10e4; long-dashed line the same, but with the particle radius in- 
creased by a factor of 5; dashed-dotted line, a’wp,/pi = 3 x 10m4 and k,,a = 8 x 10P4; short-dashed 
line the same but with the particle radius increased by a factor of 5. 

effective properties such as the density, heat capacity, conductivity, viscoelasticity, and 
compressibility in a self-consistent manner. When the wavelength is large compared 
with the particle radius the multiparticle interactions in the suspension can be approx- 
imated by Stokes or Laplace equations for which a number of effective properties 
have been determined in recent years through rigorous multiparticle calculations. 
We show that the estimates obtained using the effective-medium approximation for 
various properties are in excellent agreement with these rigorous calculations. The 
theory is also shown to be excellent agreement with the experimental data for the 
polystyrene-water system by Allegra & Hawley (1972). The ratio of particle radius 
to wavelength was small in these experiments. To test the theory for larger particles 
we have conducted experiments both for polystyrene particles and glass particles in 
water. The agreement with the data for the polystyrene-water system which exhibits 
several resonances due to shape oscillations is excellent. However, the comparison was 
limited to dilute suspensions because of the unavailability of concentrated monodis- 
perse suspensions in the particle size range of interest. The glass-water system had 
significant polydispersity but covered a broad range of volume fractions. The agree- 
ment between the theory and experiments for small particles in which the viscous 
attenuation dominates is excellent while for large particles for which the scattering 
losses dominate the agreement is good only up to 4 = 0.3. At higher volume fractions 
the attenuation measured in our laboratory decreased, in contrast with the theory 
prediction. 

In view of the remarkable success of the effective-medium approximation in pre- 
dicting the attenuation in solid-liquid systems, it seems that the procedure used here 
may also find applications in other acoustic problems, e.g. in the electroacoustics of 
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colloidal suspensions (O’Brien 1990) and in acoustics of fluid-saturated porous media 
(Burridge & Keller 1981). 
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The wave equations for the interior and exterior of the particles are ensemble averaged and 
combined with an analysis by Allegra and Hawley [J. Acoust. Sot. Am. 51, 1545 (1972)] for the 
interaction of a single particle with the incident wave to determine the phase speed and attenuation 
of sound waves propagating through dilute slurries. The theory is shown to compare very well with 
the measured attenuation. The inverse problem, i.e., the problem of determining the particle size 
distribution given the attenuation as a function of frequency, is examined using regularization 
techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, 
the success of solving the inverse problem is limited since it depends strongly on the nature of 
particles and the frequency range used in inverse calculations. 0 1999 American Institute of 
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1. INTRODUCTION 

Determining the particle size distribution of a solid- 
liquid mixture is of great practical interest. It has been sug- 
gested in the literature that this distribution may be deter- 
mined by measuring the attenuation of a sound wave 
propagating through the mixture as a function of the fre- 
quency of the wave. The main premise is that the attenuation 
caused by a particle as a function of frequency depends on its 
size and therefore the attenuation measurements can be in- 
verted to determine the particle size distribution-at least 
when the total volume fraction of the solids is small enough 
so that the particle interactions and detailed microstructure of 
the slurry play an insignificant role in determining the acous- 
tic response of the slurry. Indeed, this general principle has 
been exploited successfully to determine the size distribution 
of bubbles in bubbly liquids.le3 Commercial “particle siz- 
ers” based on acoustic response are in the process of being 
developed/marketed for characterizing solid-liquid mix- 
tures.4 The main objective of this paper is to investigate un- 
der what circumstances such a problem can be solved for 
solid-liquid systems. It will be shown that the success of the 
acoustic method for determining detailed particle size distri- 
butions is limited, depending on the nature of the particles 
and the frequency range over which input data (attenuation) 
are available. 

The problem of determining the acoustic response of a 
slurry given its particle size distribution is referred to as the 
forward problem. When the total volume fraction of the par- 
ticles is small, the problem is relatively simple since then one 
only needs to understand the interaction between a single 
particle and the incident sound wave. This has been exam- 
ined by a number of investigators in the past with notable 
contributions from Allegra and Hawley’ and Epstein and 
Carhat? who considered suspensions of particles as well as 
drops. The former investigators also reported experimental 

results verifying the theory for relatively small particles for 
which the acoustic wavelength is large compared with the 
particle radius. The theory developed by these investigators 
is quite general and accounts for attenuation by thermal, vis- 
cous, and scattering effects as described in more detail in 
Sets. II and III. The case of monodisperse nondilute suspen- 
sions has been examined by Varadan et al.’ who used an 
effective medium approximation to account for particle in- 
teractions, but their analysis was concerned only with the 
attenuation due to scattering. In Sec. II we present the theory 
for the forward problem with the main aim of reviewing the 
important physical effects causing the attenuation. The deri- 
vation for the attenuation proceeds along different lines than 
that followed by Epstein and Carhart or Allegra and Hawley 
in the way the one particle analysis is used to predict the 
attenuation of the suspension. These investigators calculated 
the energy dissipation per one wavelength to estimate the 
attenuation while we use the method of ensemble averages to 
determine both the phase speed and attenuation of waves. 
The method of ensemble averages will be more convenient 
for developing a suitable expression for attenuation in non- 
dilute suspensions, if desired, using either an appropriate 
effective-medium approximation or direct numerical simula- 
tions. 

In Sec. III we present new experimental data for nearly 
monodisperse polystyrene particles whose radii are compa- 
rable to the wavelength and validate the theory described in 
Sec. II over a nondimensional frequency range much broader 
than examined by previous investigators. We also summarize 
in that section the different physical mechanisms that cause 
attenuation in suspensions. The attenuation as a function of 
frequency is shown to undergo several peaks owing to the 
resonances in shape oscillations in agreement with the theory 
prediction. It also gives some indication of the range of fre- 
quency and attenuation measurable with our acoustic device. 

In Sec. IV we consider the inverse problem, i.e., the 
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problem of determining the particle size distribution given 
the total attenuation as a function of frequency and the physi- 
cal properties of the particles and the suspending liquid. At 
small particle volume fractions, this amounts to solving a 
linear integral equation for the unknown size distribution. 
This is an ill-posed problem: small changes/errors in the at- 
tenuation data can cause large changes in the size distribu- 
tion. Thus, for example, several very different particle distri- 
butions could give rise to essentially the same attenuation- 
frequency curve. This, of course, is a rather well-known 
difficulty in most inverse problems which involve solving a 
Fredholm integral equation of the first kind with a smooth 
kernel. Techniques have been developed to “regularize” the 
problem. We use the well-known Tikhonov regularization 
techniques,’ which replaces the ill-posed original problem 
with another well-posed problem involving an integro- 
differential equation whose solution minimizes the fluctua- 
tions in the particle size distribution. Minimizing of the fluc- 

tuations is rationalized on the grounds that in most practical 
situations the particle size distribution is smooth. This regu- 
larization technique has been shown to work very well for 
the inverse problem in bubbly liquids.2 

We apply the above technique to suspensions of polysty- 
rene and glass particles. We find that the technique works 
well for the polystyrene particles but not for all glass par- 
ticles. We also find that for polystyrene particles the tech- 
nique works only when the attenuation is given over an ap- 
propriate frequency range-a frequency range that is too 
narrow or too broad may give erroneous estimates of the 
distribution. An alternative inverse technique based on linear 
programing also failed to produce the correct particle size 
distribution for the cases for which the Tikhonov scheme 
failed. This suggests that the prospects for determining the 
detailed particle size distribution from acoustic measure- 
ments are somewhat limited. (In situations where more might 
be known about the nature of particle size distribution, e.g., 
unimodal with a Gaussian or log-normal distribution, one 
might be able to determine the size distribution through ap- 
propriate curve fitting as has been done, for example, by 
McClements and Coupland,s but this is not addressed here.) 

The reasons why the size distributions for some particle 
suspensions are not recovered by the inverse techniques 
while the same techniques were found to be quite successful 
for bubble suspensions can be given in terms of differing 
resonance nature of these suspensions. In the case of bubbles 
in most typical applications, the resonance occurs at frequen- 
cies for which the wavelength is relatively large compared 
with the bubble radius. This resonance is due to volume os- 
cillations; the shape-dependent resonances are unimportant 
and, as a consequence, there is effectively one resonance 
frequency for each bubble size. Thus, the peaks in the 
attenuation-frequency curve give a reasonable indication of 
the bubble sizes. The situation with the particles is different 
as their resonance behavior is governed by shape oscilla- 
tions. For polystyrene particles, several resonance peaks cor- 
responding to different shape oscillations arise even for 
monodisperse particles, and, as a result, it is difficult to de- 
termine whether a given resonance peak arises from a differ- 
ent shape oscillation mode of the same particle or from a 
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particle of different size. For glass particles, on the other 
hand, there are no significant resonance peaks even for 
monodisperse particles, and the attenuation behavior for dif- 
ferent sizes is not significantly different to allow accurate 
results for the size distribution. 

II. THE FORWARD PROBLEM 

The wave equations for both the interior and exterior of 
particles have been derived by Epstein and CarharL6 They 
were interested in the attenuation of sound waves in fog and 
therefore their analysis was concerned with drops instead of 
particles. The stress tensor for a viscous fluid used by them 
for the interior of the drops was subsequently replaced by 
Allegra and Hawley’ by that of an elastic solid to determine 
the attenuation of sound waves in a solid-liquid suspension. 
In this section we shall ensemble average a resulting wave 
equation to obtain the effective wave number of the suspen- 
sion at arbitrary volume fraction, the real and imaginary 
parts of which give the wave speed and attenuation. Thus, 
the attenuation is not calculated by means of an energy dis- 
sipation argument,5v6 but directly from averaging the relevant 
wave equation. The result contains certain coefficients that 
remain to be evaluated for a given microstructure. In the 
present study, since we are primarily concerned with deter- 
mining the size distribution, we shall evaluate the coeffi- 
cients in the limit of small volume fractions. In a separate 
study, where we shall present experimental results for non- 
dilute suspensions, we shall extend the theory to treat nondi- 
lute suspensions. 

A. Theory 

Epstein and Carhart first linearized the conservation 
equations for mass, momentum, and energy. The pressure 
and internal energy were then eliminated by introducing 
the linearized equations of state to yield equations in terms 
of density, velocity, and temperature. Next, the time depen- 
dence of all quantities were expressed by the factor 
exp( - @-which is henceforth suppressed-and the veloc- 
ity was expressed as 

v=-V@+VxA, 

with V . A= 0. With this form of v it is possible to eliminate 
the temperature and density from the governing equations to 
yield a fourth-order partial differential equation for @ and a 
second-order equation in A. The former, in turn, can be split 
into two second-order wave equations upon a substitution 
Cp = 4,+ & to finally yield three wave equations: 

(v2+k,2)&=0, (1) 

(V2+k&=0, (2) 

(V2+#A=0. (3) 

The wave numbers in the above equations are given by 

C2 
~=I;I[l-L(e+yf)+((1-L(e+yf))2 

+4f(L+ r4)'"17 (4) 
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+4f(~+ re))‘“l, 

k,= (1+ ‘)(wp/2/.L)ly 

with 

(5) 

(6) 

e=(4p/3+K)ol(pc2); f=:dc2. (7) 

Here, c is the phase speed in pure liquid, p is the density, K 

and p are, respectively, the compressional and dynamic vis- 
cosity, y= CP lC, is the ratio of specific heats at constant 
pressure and volume, 7 is the thermal conductivity, and 
I+= T/PC, is the thermal diffusivity. 

Inside the particles similar equations hold with the dy- 

namic viscosity replaced by $( - LW) and the wave speed 

by ((x+2,&/3)l;)1’2, where ,& and K are the Lame constants, 
while the compressional viscosity is left out. Henceforth a 
tilde refers to the interior of particles. 

At small values of e and f (such as in water), the above 
expressions for k, and k, simplify to 

k,=dc+ ;[(4@3+ K)/P+(y- l)a]w2/c3, 

kT= (1 + L)( w/2a)u2. 

Equation (1) and its counterpart inside the particles de- 
scribe the sound wave propagation through the suspension. 
Note that the wave number has an imaginary part; sound 
waves in pure fluid are attenuated by viscous and thermal 
energy dissipation;” the term inside the square brackets in 
(8) is commonly referred to as the “diffusivity of sound.” 
The total attenuation coefficient in both liquid and in the 
solid particle will henceforth be treated as additional physi- 
cal properties. The other two wave equations describe waves 
that arise from thermal conduction and finite viscosity: we 
note that the modulus of kT in Eq. (8) is inversely propor- 
tional to the thermal penetration depth 6 and that of k, 
to the viscous penetration depth ds. The thermal (&) 
and shear (A) waves have generally very high attenuation 
and are unimportant in acoustic applications. 

We now proceed to ensemble average the wave equation 
(1) to find an expression for the effective wave number of a 
wave propagating through a solid-liquid suspension. Intro- 
ducing an indicator function g, defined to be unity inside the 
particles and 0 outside, the ensemble-averaged value of 4, is 

b#4=(g&+(l -gb#d. 

To obtain a wave equation for (4,) we first take the gradient 
of the above equation to yield 

W,)=Wic+(1 -g)W,)+((W(&- 4,)). (9) 

As argued by Sangani,” upon assuming that the particles’ 
spatial distribution is homogeneous on a macroscale, the last 
term in (9), being a vector, can only depend on quantities 
such as V( 4,) and VV2( 4,). Anticipating that (4,) will 

satisfy a wave equation we express the last term on the right- 
hand side of the above equation in terms of V( 4,), i.e., we 
write 

((Vg>(~,,-~,))=X1V(~,), 
where X1 depends on the parameters such as the volume 

fraction, k, , and k’, . The divergence of (9) is given by 

v2~~c)=(gv2&+u -g)v2~c)+(m) 

w&b%))+w2GPc) 

= -k~(~,)-(~-k,2)(g~,)+((Vg) 

.(v~,-v~,))+~lv2~~c~. (10) 

Writing 

((vg).(v~,-v~,)>=x,k(~~), (&)=~3(~,)~ 

we find that (r#~,) satisfies a wave equation 

(V2+k:,,H4d=0 01) 

with the effective wave number given by 

k2 =k:+Wk7-kf)-b~ 
eff l-X1 . 02) 

The real part of the effective wave number is the frequency 
divided by the phase speed in the mixture and the imaginary 
part the attenuation. 

Up to this point the analysis is rigorous and without any 
assumption. Applying the boundary conditions of continuity 
of temperature, flux, velocity, and traction at the surface of 
the particles, and solving the resulting boundary value prob- 
lem numerically, it is possible, in principle, to determine the 
phase speed and attenuation at arbitrary volume fraction us- 
ing the above formulation. Special simplifications can be 
made when the wavelength is large compared with the par- 
ticles and when the viscous and thermal depths are small 
compared with the particle radius for which numerical com- 
putations using the multipole expansions developed in recent 
years (see, e.g., Ref. 12) can be readily used for determining 
the attenuation at arbitrary volume fractions. Alternatively, 
one may use a suitable effective-medium approximation to 
account for the particle interactions in nondilute suspensions 
using the above framework. We shall pursue this further in a 
separate study13 devoted to nondilute suspensions where we 
shall also present experimental data. Since our interest in the 
present study is in determining size distributions, it is neces- 
sary to consider only the simplest case of dilute suspensions. 

In dilute suspensions the particle interactions can be ne- 
glected, and the coefficients A I -3 can be evaluated from the 
solution for 4, for a single particle given by Allegra and 
Hawley.5 Accordingly, the conditionally averaged 
( +c)(x(xl) given a particle centered at x1 is given by 
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where F = Ix- x1 1, p= cos 13, B being the angle between x 
-x1 and k, , h, is the spherical Bessel function of the third 
kind (corresponding to an outgoing scattered wave), and P, 
is the Legendre polynomial of degree n. The first term on the 
right-hand side of the above expression is the uncondition- 
ally averaged ( I$,)( ) x w h ose amplitude is taken to be unity 
with no loss of generality. 

Inside the particle centered at x1 we have 

Xk.jn(&~,r)P,(CL)~ (14) 

where j, is the spherical Bessel function of the first kind. 
Similar expressions are written for the conditionally aver- 
aged $~r and A. This results in expressions with a set of six 
unknowns for each mode n. Application of the aforemen- 
tioned boundary conditions of continuity of velocity, trac- 
tion, temperature, and heat flux yield six equations in these 
six unknowns for each n. There were some typographical 
errors in the equations given by Epstein and Carhat? and 
Allegra and Hawley;’ the correct equations are given in the 
Appendix. Although it is possible to solve for the unknowns 
analytically in certain limiting cases, it is best to solve them 
numerically since we are interested in covering a wide be- 
quency range for inverse calculations. 

We now return to the calculations of the coefficients 
Xtm3. Upon using the identity 

Vg= -ns(X-Xi), 

with xi being a point on solid-liquid interface and n the unit 
normal vector at the point, At is given by 

hlV(4Jc)(x)= - Jxpx ,= ~[(d,)<~I~1)-(9c>(~I~1>1 
1 0 

X P(x,)dAl. (15) 

Here, P( x,) is the probability density for finding a particle in 
the vicinity of x1. Similarly, we have for A2 and A3 

A2~(4&4= - 1.. ,= n-V[(iWxlxl) 
1 a 

and 

b(#d(x)= 1 g(x)(~,>(xlxl)P(xl)dV1. (17) 

The above integrals must be evaluated while keeping in mind 
that the integration variable is x1 . Thus, for example, in (15) 
and (16) we must consider all particles whose surfaces pass 
through the point x. To carry out these integrals we use the 
identity 

e LkC. x, = e Lk,. xe - uk,p 

=eLkc’xmio L~(- 1)“(2m+ l)j,(k,r)P,(p) 08) 

and the orthogonality of the Legendre polynomials over 
spherical surfaces. The resulting expressions are 

x [X,,j,,(?l -j,(z) -A,Mz)l~ 

AZ= - ynTo (2n+ l)j,(z) 

(19) 

X x,,jA(?l- !j:(z) - A,ih,(z) , 
I I 

(20) 
2 

A3,?t~, _ - 
i 

sin(Gz) sin(Z+z) 

222 1 
+ 

z-z z+z 
$$sl (2n+l) 

XAl,[~jj,-l(~)j,(z)-zj,(~))j,-l(~)l, (21) 

where in the expression for A I the j, - t-term in the n = 0 
contribution is to be left out. Here, 4 is the volume fraction 

of the solids, z = k,a and ?=zca are the nondimensional 
wavenumbers, and primes denote derivatives. Expressions 
(19)-(21), together with the expression for the effective 
wave number (12), complete the description of a solid-liquid 
mixture at low volume fractions. 

In the above we have derived expressions for the attenu- 
ation and wave speed by calculating the effective wave num- 
ber directly. An alternative derivation of the attenuation co- 
efficient is to calculate the energy dissipation per wavelength 
in the mixture and divide the result by the energy per wave- 
length. The result for the attenuation per unit length is then5T6 

aZ-zio (2n+l)ReA,. (22) 

It can be shown that the two methods give essentially the 
same result for the attenuation in the limit &-+O with 
z- 2 Re A, in the above replaced by Re(A, /z)/Re(z) in the 
ensemble-averaging method presented here. 

The above analysis may be extended to account for the 
effect of finite volume fraction through a suitable effective- 
medium approximation. Sangani” showed that the first cor- 
rection of 0( 43’2) to the dilute 0( 4) approximation for 
bubbly liquids can be simply derived through an effective- 
medium approximation. This correction is most significant 
near the resonance frequency of bubbles, and to correctly 
capture the behavior near resonance it is important to replace 
the pure liquid wave number (k, in the above analysis) by 
the effective wave number. Thus, in the present context, 
z=k,a in (19)-(21) for Alv3, is replaced by zeff=keEa, 
while the wave number in pure liquid in the expression for 
keK, (12) has to be retained. The latter expression is then 
iterated to obtain a converged solution for k,ff. The 
effective-medium approximations have been found to be 
quite useful in the related study of light scattering by suspen- 
sions (see, e.g., Ref. 14). For very high volume fractions the 
@her physical properties of the so-called effective medium 
must also be modified. In a separate study,t3 where we shall 
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report experimental data for dense slurries, we shall examine 
several different versions of effective-medium approxima- 
tions in more detail. 

Finally, the above analysis can be extended in a straight- 
forward manner to account for the particle size distribution 
when the total volume fraction of the particles is small. Let 
us write the attenuation by particles of radius between a and 

a + da as an attenuation density &Cf,a) [where f is the fre- 
quency of the wave, f= wl(27r)] times the volume fraction 
of those particles &a)da; we shall refer to +(a) as the 
volume fraction distribution. At low volume fractions these 
contributions can be “summed” over all particle sizes to 
give for the total attenuation atotCf): 

g %x(f) = I hf&iWda. a=0 
It is customary to express the particle size distribution in 
terms of its number density distribution P(a). The volume 
fraction distribution is related to P(u) by +(a) 
=(4m3/3)P(u). 

The effective-medium approach described earlier can 
also be readily extended to account for the particle size dis- 
tribution. The coefficients Xre3 are first determined as func- 
tions of a for an assumed value of the effective wave number 
and these are integrated after multiplying by &u)du to yield 
estimates for the average values of hle3 for the suspension. 
These are substituted in (12) to determine k,n. If this esti- 
mate of &f is different from the the assumed value, then 
A, -3 are estimated for the new value of /~,a, and the process 
is repeated until the assumed and estimated values of the 
effective wave numbers agree with each other. 

Ill. DISCUSSION AND COMPARISON WITH 
EXPERIMENTAL DATA 

Figures 1 and 2 show the predictions for the attenuation 
and wave speed as a function of frequency f for ‘79 pm radius 
polystyrene particles at a volume fraction of 0.05. The fre- 
quency f in Hz is related to o by w = 277f. The physical 
properties used in the computations are given in Table I.15 
We note that the wave speed only changes if the frequency 
becomes very large and that these changes coincide with 
strong changes in the attenuation as well. Hence we expect 
that the measurement of the phase speed will not provide 
significantly new information over that obtained from the 
attenuation measurements alone as far as the problem of de- 
termining the size distribution is concerned. On the other 
hand, since the phase speed at low frequencies is nearly in- 
dependent of the frequency or k,a, it might be possible to 
use the low frequency speed data to determine the total vol- 
ume fraction of the particles regardless of its size distribu- 
tion. We shall focus in the present study on the results for 
attenuation as they are the most sensitive to the particle size 
distribution. 

The attenuation of sound waves in a suspension is dif- 
ferent from that in pure liquid because of four effects. First, 
the attenuation of sound in pure solid is different from that in 
pure liquid, and hence simply the presence of the particles 
changes the attenuation from that of pure liquid. Second, 

1U6l 
IO4 lo5 lo6 

FREQUENCY (Hz) 

.I 
1c I’ 

FIG. 1. Example of the dependence of attenuation on frequency f for a 
mixture of monodispersed polystyrene particles in water. Dashed lines are 

asymptotic slopes of the attenuation for small and large frequencies. 

changes in temperature are different in a solid than in a liq- 
uid, and this causes a heat flux through the surface of the 
particles. This heat flux is out of phase with the sound wave 
passage and this leads to attenuation referred to as the ther- 
mal attenuation. Third is the viscous energy dissipation 
caused due to the motion of the boundary of the suspended 
particles. Finally, the fourth effect is the attenuation due to 
scattering. 

Allegra and Hawley’ showed that when the particle size 
is much smaller than the wavelength and much greater than 
the thermal and viscous penetration depths ( er/lw)ln and 

1 1,561 
156- 

1.54 

1.42- 

1.4’ A 

lo4 i05 lo6 10’ 
FREQUENCY (Hz) 

FIG. 2. Example of the dependence of wave speed on frequency f for a 
mixture of monodispersed polystyrene particles in water. 
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TABLE I. The values of the physical properties that are used in this paper. The properties of water and 

polystyrene were taken from Ref. 6; the properties of glass from various sources, most notably Ref. 15. 

density (g/cm3) 

thermal conductivity (J/K.cm.sec) 

specific heat (J/g.K) 

thermal expansion coefficient (l/K) 

attenuation coefficient per freq’ (sec2/cm) 

sound speed (cmfsec) 

shear viscosity (gkm.sec2) 

shear rigidity (g/cm. sec2) 

Polystyrene 

1.055 

1.15x10-3 

1.19 

2.04X 1O-4 

lo-‘5 

2.3~10~ 
. 

1.27X10’” 

Glass 

2.3 

9.6X 1O-3 

0.836 

3.2X 1O-6 

lo-‘5 

5.2x 105 
. 

2.8X 10” 

Water 

1.0 

5.87X1O-3 

4.19 

2.O4X1O-4 

2.5X10-I6 

1.48X105 

1.01x10-2 
. 

(v/o) 1 1’2 the resulting viscous and thermal attenuations in- 
crease as fin. On the other hand, when the penetration 
depths are much greater than the particles, both attenuation 
contributions increase as f2. This transition occurs at very 
low frequencies-about 2 Hz for 100 p radius particles in 
water-and will not be considered here. Attenuation due to 
scattering becomes important when the nondimensional 
wave number z= k,a becomes comparable to unity. For 
small but finite z the scattering losses increase as f”. Thus, 
one expects that the change in the attenuation behavior from 
f”2 at low frequencies to f” at high frequencies will provide 
an important indication of the particle size. These asymptotic 
ranges are indicated in Fig. 1. We see that the transition to 
the f” behavior does not fully occur for the particles consid- 
ered here. As the frequency is increased particles undergo 
several resonances as described in more detail below, and 
this is responsible for the several peaks seen in Fig. 1. 

Figure 3 shows the contributions to the total attenuation 
from each P, mode. The n = 0 mode corresponds to radial 
(volume) oscillations of the particles, n= 1 to the transla- 
tional oscillations, n = 2 to the ellipsoidal P2-shape deforma- 

i // 4l=2 / , ,‘I’ ,’ 
1o4' /'/ 

/ 
;:) ,I 

" '/ 
--- / 

I 

,'7' I 
- -"Go' / 

,' / 
10'5 /__--- -7 

--&< i /I 
: ! 

_.-- 
_/-- 

/--- / 
/ / / 

/ n=3 ./ .‘n=4 

IO41 
/: / / 

IO4 lo5 IO6 IO’ 
FREQUENCY (Hz) 

FIG. 3. Contributions from the first five modes n in (19)-(21) to the total 

attenuation [the imaginary part of kcrt. which is given by (12)]. Polystyrene 

particles in water. 

tion oscillations, and so on. The density of polystyrene par- 
ticles is essentially the same as that of water, hence the 
particles’ translational oscillations are very small. As a con- 
sequence, the viscous attenuation is small and the small fre- 
quency behavior is governed by the thermal attenuation of 
the n = 0 mode. At higher frequencies the n = 0 mode begins 
to increase first as f” due to scattering losses but the contri- 
bution from the n=2 mode soon becomes important as it 
undergoes a resonance at about 3 MHz frequency. The 
n = 3 and n = 1 modes undergo resonances next, and so on. 
We see that the n = 0 mode undergoes a broad maximum 
around 9 MHz. Although not shown here, it too undergoes a 
resonance with a sharp downward peak at about 21 MHz. 
Thus, we see that the attenuation varies with frequency in a 
rather complicated manner at high frequencies owing to vari- 
ous resonances. We should note here that the behavior of this 
kind for polystyrene particles has also been reported by other 
investigators in the past. For example, Anson and Chivers16 
and Ma, Varadan, and Varadan,14 who restricted their analy- 
sis to scattering losses only, found essentially the same be- 
havior, and in earlier investigations17,18 mainly focusing on 
the determination of waves reflected by immersed objects, 
high-amplitude reflected waves were found at certain reso- 
nance frequencies. 

Figure 4 shows attenuation as a function of nondimen- 
sional wave number k,a for particles of radii 50 and 79 
microns. We see that the curves for these two radii are es- 
sentially the same, indicating that, at least for polystyrene 
particles, the thermal or viscous effects have negligible in- 
fluence on the resonance frequency. The first resonance cor- 
responding to n= 2 appears at k,a= 1.4. 

Allegra and Hawley’ tested (22) extensively against their 
experiments and found very good agreement. However, their 
particles were always smaller than 1 w radius, so that the 
wavelength was always much greater than the particle size. 
No resonance behavior was observed in their experiments. 
Although the above-mentioned paper by Ma, Varadan, and 
Varadan14 presents experimental data on light scattering in 
the small-wavelength regime, no data on attenuation of 
sound waves by particles were presented. To test how well 
the theory works for larger particle sizes, we carried out an 
experiment that will be described in detail (along with more 
experiments on concentrated slurries) elsewhere.13 In this ex- 
periment the attenuation of sound waves was measured in a 
frequency range of 1 - 10 MHz in a solid-liquid mixture of 
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FIG. 4. Attenuation divided by wave number as a function of the wave 
number times the particle radius in the scattering regime for monodispersed 

polystyrene particles (-, a = 79 pm; ---, a = 50 pm). The volume fractions 

of the particles in both cases are the same and equal to 0.05. 

polystyrene particles with 79-+3,u mean radius and 1.8 p 
standard deviation at 0.05 volume fraction. Monochromatic 
tonebursts, at incremental frequencies, were transmitted by a 
transducer on one side of a small vessel in which the mixture 
was being stirred; a second transducer received the signal 
and sent it to a LeCroy 9310A digital oscilloscope. The am- 
plitude of the signal for pure water was measured, as was 
that for the solid-liquid mixture. The excess attenuation was 
determined by 

l i Vmir \ 

where d is the distance between the transducers and Vii, and 
Vn,o are the voltage amplitudes of the received signals in the 

mixture and pure water, respectively. The distance between 
the transducers was 2 in. at low frequencies and 1 in. at 
higher frequencies; this was necessary because the attenua- 
tion at higher frequencies was too large to produce signifi- 
cant signal-to-noise ratio in the larger vessel. 

Figure 5 shows the comparison between theory and ex- 
periment. At the two gaps in the frequency domain (where 
the theory predicts very high peaks) the attenuation became 
again so large that the signal-to-noise ratio vanished even in 
the smallest vessel. Good agreement is found between ex- 
periments and the theory except near resonance frequencies 
where small differences are seen. There are two possible 
reasons for these small differences. The first is concerned 
with the finite volume-fraction effect. To investigate this we 
have also plotted in Fig. 5 a result from an effective-medium 
approach described in the previous section. The resulting at- 
tenuation changes, but in the wrong direction. The second 
reason is that the particles were not exactly monodispersed. 
Using the method described in the previous section, a log- 

-17 
FREQUENCY (Hz) 

FIG. 5. Comparison with experimental data for the attenuation as a function 

of frequency. Polystyrene particles of radius a=79 pm and 0.05 volume 
fraction. 0, experiments; -, theory for monodispersed particles; 

-.-.-., theory for monodispersed particles with effective medium correction 
for finite volume fraction effects; ---, theoretical result with a particle sire 

distribution with a mean particle radius of 77 pm and standard deviation of 
2.5 pm (this is within the range specified by the manufacturer). 

normal particle size distribution was introduced with a mean 
radius of 77 and 2.5 pm standard deviation, which lies 
within the manufacturers’ specifications. The result for the 
attenuation, the dashed curve in Fig. 5, shows close agree- 
ment with the data. Thus, we conclude that the agreement 
between the theory and experiment is excellent, and that the 
small observed differences are due to small polydispersity of 
the suspension. 

The attenuation behavior displayed by polystyrene par- 
ticles is not generic, as can be seen from Fig. 6 which shows 
the attenuation behavior for glass particles. Since the density 
of the glass particles is significantly different from that of 
water, the glass particles execute significant translational os- 
cillations. As a consequence, the low-frequency behavior is 
completely governed by the viscous effects and the n = 1 
mode. Note that the small frequency attenuation is about two 
orders of magnitude greater for glass particles than for the 
polystyrene particles. Also we see a considerably different 
behavior at higher frequencies. The attenuation does not 
seem to peak at several frequencies. Rather, for each n we 
see broad “hills” separated by narrow “valleys.” The total 
attenuation does not appear to go through several resonances. 
The difference in the behavior for the glass and polystyrene 
particles at these high frequencies seems to arise mainly 
from the different elastic properties of the two materials. 

IV. THE INVERSE PROBLEM 

We now consider the inverse problem: given the total 
attenuation atot as a function off we wish to determine &a) 
using (23). The straightforward method of solving the inte- 
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FIG. 6. Attenuation by monodispersed glass particles (of 79 pm radius) in 
water as a function of frequency and the contributions from the first three 

modes n in (19)-(21) to the total attenuation [the imaginary part of k,rr, 
which is given by (12)]. 

gral equations, i.e., discretizing the integral domain into a 
number of elements and converting the integral equation into 
a system of linear equations in unknowns c,@ak) at a selected 
number of points uk in the domain, cannot be used since the 
resulting equations will be ill conditioned. Figure 7 illus- 
trates the ill-posed nature of the problem. Figure 7(a) shows 
two very different particle distributions whose attenuation 
versus frequency curves are seen in Fig. 7(b) to be essen- 
tially the same. These curves were obtained by starting with 
a smooth, log-normal particle size distribution [the dashed 
curve in Fig. 7(a)] and generating the attenuation versus he- 
quency data using the forward theory [the circles in Fig. 
7(b)]. A 1% random noise was then added to the data and 
(25) with E=O, which is equivalent to the integral equation 
(23), was subsequently solved to yield the particle size dis- 
tribution indicated by the solid line in Fig. 7(a). The pluses in 
Fig. 7(b) correspond to the attenuation determined from the 
forward theory using the new particle distribution. Note that 
the attenuation is evaluated with a smaller frequency incre- 
ment than the one used for the original distribution. We see 
that the attenuation from the two distributions agree with 
each other to within 1% for the frequencies marked by 
circles. The highly oscillatory particle distribution does show 
an oscillatory behavior in between the frequency increments, 
particularly at 10 MHz, but these oscillations occur only for 
a very narrow frequency range and would have been missed 
altogether had the attenuation been determined only at the 
input frequencies. 

A. Method 

Since the true particle distribution is expected to be 
smooth, we must only allow solutions that are reasonably 
smooth There are several ways of accomplishing this. In the 

i 
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FIG. 7. Influence of fluctuations superimposed on the volume fraction dis- 

tributions (a) on attenuation data (b). In (b) the circles correspond to the 
result when using the dashed distribution of (a) and the pluses when using 

the solid line in (a). 

present study, we shall use primarily a regularization tech- 
nique due to Tikhonov* which was successfully used for 
bubbly liquids by Duraiswami.2 An alternative method is 
presented at the end of this section. Accordingly, we multi- 

ply (23) with &,a)df and integrate over the frequency 
range to obtain a simpler integral equation in which the 
right-hand side is only a function of a: 

=b(u)= I jm’.atot(f)4f,4df7 04) 

where (uen ,uJ and (fti,,f-) are the radius and fre- 
quency ranges. The above integral equation is now regular- 
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ized as explained below by adding a small term ~(4 
- Z*#‘) (where primes denote derivatives) to its left-hand 
side. Thus, we obtain 

Gw-ww1+ I 
am”K(u,u’)~(u’)du’=b(u), (25) 
%lin 

where I is a suitably chosen lengthscale and K(u,u ’ ) is a 
kernel defined by 

I 

f 
K(u,u’) = max&f,u) &,a ‘)df. (26) 

fmin 

Equation (25) is an integro-differential equation and needs 
two boundary conditions. Usual practice is to take the de- 
rivative of +(a) to be zero at the two end points: 

qh’(a~n)=#(um)=O. (27) 

Note that amin and amax are not known a priori in general. 
One expects 4 to be zero also at the two end points. Thus, 
the range (atin-%,) must be determined by trial and error 
so that both 4 and its derivatives are approximately zero at 
the extreme values of a. 

Now it can be shown that the solution of (25) subject to 
the boundary conditions given by (27) minimizes 

E+e 
I 

"m~[{~(u)}~+z~{~'~u~}~l~u, (28) 
Gin 

where E is the measure of error between the actual attenua- 
tion and the computed attenuation: 

2 

E= amax;r(f,u)&u)du- a&f) df. (29) 

Since both E and the second term in (28), i.e., the integral, 
are non-negative, minimization of (28) ensures that the solu- 
tion of (25) will be free from large oscillations in 4. In other 
words, highly oscillatory distributions such as the one shown 
in Fig. 7(a) are rendered inadmissible when (25) is solved 
with finite, positive E in place of the original integral equa- 
tion (24). Thus, we have regularized the problem of deter- 
mining 4. 

If we choose a large e, then we decrease the oscillations 
in 4 but increase the error in &a) since then the equation 
solved is significantly different from the original integral 
equation. Small E, on the other hand, yields unrealistic +(a) 
having large oscillations when the data (Y&) are not exact. 
An optimum choice of 6 then depends on the magnitude of 
uncertainty/error in the attenuation-frequency data. In the 
calculations we shall present here the exact at&) is first 
determined using the forward theory for a given &a) and a 
small random noise of about 1% magnitude is added to it 
before the inverse calculations are made (the effect of noise 
magnitude is discussed below). Thus, we have an estimate of 
the error in the data but in general this estimate may not be 
known reasonably accurately. To determine the optimum 6, 
we solve (25) for several different E)s and plot E versus E to 
find a minimum in E. This, however, may lead to distribu- 
tions in which 4(u) may have unphysical negative values 
for some a. The constraint #(a) 30 for all a is satisfied a 
posteriori by setting +(a) = 0 for all u’s for which the solu- 

tion of (25) gave negative values of 4. The computed value 
of E for a given E is then based on $(u)aO. 

The integro-differential equation (25) was solved as fol- 
lows. After discretizing the domain (urnin-urnax) into N- 1 
equal segments and the frequency domain into M - 1 loga- 
rithmically equal segments we first evaluate the kernel 
K(Ui ,Uj) for i,j= 1,2,...,N [cf. (26)] using a trapezoidal rule 
for the integration over the frequency range. As pointed out 
by Duraiswami,* it is essential to calculate the integral over 
particle radius very accurately. We assume that +(a) varied 
in a piecewise linear manner in each segment and use a 12- 
point Gauss-Legendre quadrature to evaluate the integral in 
(25). A second-order central difference formula was used to 
evaluate &‘(a) at all points except the end points amin and 
urnax. The boundary conditions +‘(utin)=O and $‘(a,,& 
=0 were approximated using, respectively, second-order for- 
ward and backward difference formulas. Application of (25) 
at all the discretization points together with the boundary 
conditions can be expressed with the above scheme as a sys- 
tem of linear equations: 

,il Aij+j=bi 9 i= 1,2 ,..., N, (30) 

where ~j= I and bi=b(ui). The above set of equations 
was normalized by dividing all the equations with the great- 
est element of the kernel K(ui ,Uj), K, for all ij, times the 
segment length Au = ( amax -u,&/(N-1). This set of equa- 
tions was subsequently solved using a standard IMSL sub- 
routine for linear equations. 

Once +j are determined for a selected value of E, we 
satisfy the constraint ~j~0 by setting, as mentioned earlier, 
+j= 0 for all negative ~j. The error E as given by (29) WAS 

subsequently evaluated using a trapezoidal rule for integra- 
tion over the frequency range. The optimum value of l was 
determined by stepping logarithmically through several val- 
ues of E and plotting E versus E. 

A typical result (N=30, M= 112, fti,=O.l MHz, f,, 
=17MHz, uti,=15~mandu~=35~m)fortheerrorEin 
the resulting attenuation as a function of E is shown in Fig. 8. 
Note that E here is the actual E divided by K,Au. We see a 
clearly defined optimum value of E. Computations were also 
made with larger M to confirm that the resulting volume 
fraction distribution was not affected by the further refine- 
ment in the integration over the frequency range. A remark 
should also be made of the choice for the length 1 in (25). We 
may regard both E and 1 as parameters to be chosen so as to 
minimize the error E. Taking Z = ( amax -ati& we computed 
E by varying both E and n with n varied from 1 to N. The 
three-dimensional plot of E versus n and e showed that E 
was much more sensitive to the choice of E than it was to n. 
In general, the results with n close to N were slightly better 
than with those near n = 1. Based on this observation we 
chose n = 30. For larger values of N(N>40) we found that 
choosing II = N led to more oscillatory behavior for +i . This 
is to be expected since choosing larger n, and, hence, smaller 
1, permits larger values of 4’ (a). 
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FIG. 8. Typical dependence of the error in the attenuation for the solved 
volume fraction distribution as a function of the regularization parameter E. 
The (small) parameter l should be chosen such that this error is minimized. 

The minimum was always found to be well-defined. 

B. Results and discussion 

We now present results for the volume fraction distribu- 
tion obtained using the above technique. As mentioned ear- 
lier, we used the forward theory to generate attenuation data 
for an assumed volume fraction distribution. Small random 
noise can be added to the data thus generated to mimic pos- 
sible errors arising in the attenuation measurement. This is 
satisfactory since we are primarily interested in assessing the 
procedure for solving the inverse problem. If the procedure 
gives erroneous results even for this case, it will certainly 
break down in practice using the experimentally generated 
data. 

The frequency range over which the attenuation mea- 
surements are carried out in our laboratory is 0.1-15 MHz. 
We shall choose here the same range to investigate the suc- 
cess and limitations of the above technique to solve the in- 
verse problem although we shall also consider cases with a 
larger frequency range to inquire if better estimates of #~(a) 
could be achieved if the attenuation data at higher frequen- 
cies were to be made available. This is important since the 
acoustic instruments operating up to 150 MHz are available. 

We consider first particle sizes that are of the same order 
of magnitude as the wavelength somewhere in this frequency 
range, which is the case for particles of about lo-100 p 
radius (for larger particles observed behavior of the attenua- 
tion is shifted to lower frequencies). A particle size distribu- 
tion that is often used is a log-normal distribution, which 
results in volume fraction distributions such as the smooth 
one shown in Fig. 7(a). We attempt therefore to recover that 
distribution from the corresponding attenuation data. As in 
the forward problem, we shall investigate polystyrene par- 
ticles and glass particles in water, as the first are almost 
neutrally buoyant and deformable while the latter are very 
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FIG. 9. Solving the inverse problem for polystyrene particles. The solid line 
is the volume fraction distribution used to generate attenuation data [shown 

in Fig. 12(a), with f,, as indicated by a square]; the dashed line is the 

solution of the inverse problem when taking the particle radius range to be 

l-100 m and using 50 “bins” of particle sizes. 

rigid and much heavier than water; the physical properties 
used in the present calculations are listed in Table I. 

We begin with the results for polystyrene particles with 
a narrow size distribution in the range of 20-30 pm. The 
particle size range for the inverse calculations is first taken to 
be much greater-5- 100 pm; the frequency range was 
0. l- 17 MHz. Figure 9 shows that the volume fraction distri- 
bution as evaluated from the inverse technique is in very 
good agreement with the input distribution. The result for the 
size distribution can be improved further by making the par- 
ticle size range smaller (a close-up of the improved result is 
shown in Fig. 11). 

In Fig. 10 we consider a more complicated, bimodal size 
distribution in the range of 20-45 pm with peaks at about 25 
and 38 ,um. The attenuation as a function of frequency for 
this distribution is shown in Fig. 10a. The maximum fre- 
quency used for inverse calculations is indicated by a square; 
it is seen that the frequency range includes the first two reso- 
nance peaks of the attenuation curve. From Fig. 10(b) we see 
once again that the inverse procedure recovers this distribu- 
tion very well. 

One of the difficulties in solving an ill-posed problem is 
that small errors in the input (attenuation) data can cause 
large changes in the solution. Of course, errors are always 
present in the experimentally obtained attenuation data. The 
calculations presented so far were made with no added noise. 
To mimic the practical situation, we added random noise of 
5% standard deviation to the input data; this is about the 
same as the order of magnitude of the errors present in the 
experimental results shown in Fig. 5. The resulting volume 
fraction distribution, shown in Fig. 11, does confirm that 
small fluctuations in the input data only cause small devia- 
tions in the output. When the calculations were repeated with 
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FIG. 10. Attenuation (a) and the solution of the inverse problem (b) for a 

bimodal distribution of polystyrene particles, using 30 particle size bins. In 

(b), the solid line is the exact result, markers represent the inverse problem 

solution when using for f, the value indicated by a square in (a). Results 

when cutting of the frequency range at the point marked by a triangle are 

discussed along with Fig. 14. 

a noise of 10% standard deviation, the computed particle size 
distribution was found to be considerably different from the 
input distribution, although the main features of the size dis- 
tribution were preserved by the inverse computations. 

Figure 12 shows the effect of varying fmax on the com- 
puted distribution. As seen in the figure the resonance in the 
shape oscillations of the (polystyrene) particles leads to a 
change in the slope of the curve just before the first reso- 
nance. This transition occurs just beyond the point marked 
by a circle in Fig. 12(a). We see a marked improvement in 
the results in Fig. 12(b) when f,, is chosen corresponding 
to a point marked plus in Fig. 12(a) over those obtained with 
a point corresponding to the circle which does not include 
the second change in slope. The point marked plus corre- 
sponds to a frequency greater than the frequency at which the 
second change in slope occurs for larger particles but smaller 
than that for smaller particles. This seems to give rise to an 
inverse solution which is reasonably accurate for larger par- 
ticles but not for smaller particles. Also shown in Fig. 12(b) 
are the results when f,, is chosen to coincide with the end 
of first peak, the point marked square in Fig. 12(a). This is 
seen to yield very accurate results for the size distribution. 

The results discussed so far suggest that the inverse One might suppose that covering a broad enough fre- 
problem can be solved with reasonable success. We now quency range will alleviate the difficulties seen above. This, 
illustrate some limitations. The inverse method gave errone- unfortunately, is not the case. Figure 13 shows the results for 
ous particle size distributions for smaller particles when the three different f,, . The dashed curve corresponds to cutting 
same frequency range as the above was used. Of course, in off the frequency range at the end of first peak as in Fig. 12, 
order that the size of the particles be determined there must the dashed-dotted line to the end of three peaks, and the 
be at least one transition-from the thermal attenuation dotted line to lo9 Hz, a frequency about 50 times greater 
dominated regime to the scattering dominated regime which than the first resonance frequency. We see that the results of 
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FIG. 11. Solution of the inverse problem when random noise of 5% stan- 

dard deviation is introduced in the attenuation (input) data. Solid line is the 
exact result; the broken line is the result when no noise is introduced (al- 
ready shown in Fig. 8); and the dash-dotted curve is the result after intro- 

duction of the noise. Polystyrene particles in water. 

occurs roughly speaking at k,a = 0( 1) _ If the particles are 
very small, then this transition may not occur over a fixed 
frequency range. However, as we shall presently see, the 
results are very sensitive to the frequency range chosen for 
computations even when this transition is included in the 
range. 
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FIG. 12. Influence of the size of the frequency range over which attenuation 

is specified on the solution of the inverse problem. Polystyrene particles. (a) 
Input-attenuation data and four different upper bounds on the frequency. (b) 

Results from the inverse problem from these different ranges, using the 

same marker type. The solid line is the exact result; 0, result when cutting 
off the frequency range just at the end of the first peak in the attenuation; +, 
result when cutting of the frequency range after the second change in slope 

of the attenuation; and 0, result when cutting off before the second change 
in slope. Cutting off the frequency range at the point marked “ 0 ” is dis- 
cussed along with Fig. 13. 

inverse calculations actually deteriorate if a much larger 
range of frequency is employed, notwithstanding the fact that 
measurements over such a broad frequency range could itself 
be a very challenging task. One may rationalize this result as 
follows. As seen in Fig. 1 a monodisperse suspension will 
exhibit several resonance frequencies corresponding to vari- 
ous shape oscillation P, (n = 2,3,...) modes. Thus, a second 
peak in the attenuation-frequency curve for polystyrene par- 
ticles may correspond either to say, a P3 mode of a larger 

J 
5 

FIG. 13. Too big a frequency range over which the attenuation is available 

for polystyrene particles also deteriorates the result: the solid line is the 
exact result; the dashed line is the inverse problem result when using attenu- 

ation data of Fig. 12(a) below the point marked by “[7,” the dashed-dotted 

line represents the result when this end point is shifted to the point marked 
by “ 0 ” and the dotted line is the result when this end point is shifted to 

1000 MHz. 

particle, or may correspond to a Pz mode of a smaller par- 
ticle. In our calculations we used only up to the first six 
modes (n< 5), but in practice the acoustic response may be 
further complicated by the higher-order modes for frequen- 
cies of order lo9 Hz considered here. 

Since including a wide frequency range with several 
resonance peaks seems to adversely affect the inverse calcu- 
lation, one may consider cutting off the attenuation data be- 
yond first peak. This, however, may not work if the distribu- 
tion is truly bimodal as was the case considered earlier in 
Fig. 10. If we omit the second resonance peak from the at- 
tenuation data by considering a maximum frequency that is 
less than the point marked square in Fig. 10(a), say, that 
marked by the circle, we get a poor inversion as shown in 
Fig. 14. The inverse technique computes accurately the vol- 
ume fraction distribution of larger particles whose resonance 
was included in the data but fails to predict that for smaller 
particles. 

Figure 15 shows results for a broad, unimodal distribu- 
tion. The resonance peaks of different particles overlap in 
this case resulting in the absence of peaks in the attenuation- 
frequency curve [Fig. 15(a)]. Figure 15(b) shows the results 
of inversion for three different cut-off frequencies. The larg- 
est frequency, marked by a square in Fig. 15(a), is larger than 
the second transition frequency of small as well as large 
particles, and this seems to produce excellent inverse results. 

In most of the inverse calculations shown so far which 
yielded poor results, we note that the failure is particularly 
severe for smaller particles. One may rationalize this by ob- 
serving that the total error E will be dominated by the errors 
at large frequencies since the attenuation there is very large. 
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FIG. 14. As in Fig. 10(b), but after cutting off the frequency range over 

which the attenuation was given between the tirst and second (attenuation) 
peak, indicated by a triangle in Fig. 10(a). 

When k,atin<l in the frequency domain that is considered, 
the small particles’ volume fraction is seen from Figs. 12(b) 
and 14 to be underestimated, while the large particles’ vol- 
ume fraction is overestimated. To decrease the relative im- 
portance of the attenuation at high frequencies, we solved a 
slightly different inverse problem in which both the attenua- 

tion and & were divided by f2. However, only small im- 
provements were found by modifying the attenuation data 
this way. The inverse-problem result shown in Fig. 14 was in 
fact obtained in this way. 

Some insight into why the choice off,, drastically af- 
fects the results may be gained from Fig. 16, which shows 
the three-dimensional plots for the kernel K(ai ,aj) for the 
same values of f,, as considered in Fig. 12. We see that 
when fmar= 10.4MHz, corresponding to the circle in Fig. 
12(a), the kernel has a maximum for ai= aj= amax. The ker- 
nel for smaller particles is very small and, as a consequence, 
the inverse technique could determine the larger particle size 
volume fraction correctly but failed for smaller particles. In 
contrast to this the kernel forf-= 17.1 MHz, corresponding 
to the end of first peak, shows significant variations for a 
wide range of values of ai and aj , and this apparently leads 
to a much better inverse solution. Finally, the kernel for 
f-=30.4 MHz, corresponding to the end of the third reso- 
nance peak, shows a less pronounced structure. 

It is also instructive to examine the kernel and the results 
of inverse calculations for the problem of determining 
bubble-size distribution in bubbly liquids examined by 
Duraiswami.2 The inverse procedure works very well for 
bubbly liquids as can be seen from Fig. 17(a) which shows 
the input and computed bubble size distributions to be in 
excellent agreement. The kernel for this case has smooth 
variations over a wide range of bubble radii as seen in Figure 
17(b). The attenuation as a function of frequency is shown in 
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FIG. 15. As Fig. 12, but with a broader size distribution. 

Fig. 17(c). The main reason for the success of the inverse 
technique for bubbly liquids seems to be that there is one 
resonance frequency for bubbles of each size. As long as the 
frequency range is broad enough to cover the resonance fre- 
quency of all the bubbles, it is possible to determine the size 
distribution. 

The results presented so far were for polystyrene par- 
ticles. We have also carried out inverse calculations for glass 
particles. As indicated earlier (cf. Fig. 6) there is no clear, 
sharp resonance frequency peak for glass particles. As a con- 
sequence, the inverse calculations for the glass particles did 
not show, in general, good agreement with the input size 
distribution. 

The results presented so far show that the success of 
Tikhonov regularization to solve the inverse problem is lim- 
ited. Although we have given plausible reasons for why the 
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FIG. 16. The kernel K(a, ,aj) for polystyrene particles when using forf,,,, 

the value indicated in Fig. 12(a) by a 0 (a), + (b), and 0 (c). 

method works well for bubbles but not for all particles, it is 
possible that other techniques for solving the inverse prob- 
lem may be more successful. For that reason we have at- 
tempted an alternative method2*3V’9 based on linear program- 
ing that we shall briefly describe here. 

The constraint +(a)>0 for all a was satisfied only a 
posterior-i in the Tikhonov scheme. To ensure that the error 
is minimized while satisfying this constraint, we reformulate 

the original inverse problem as an optimization problem. The 
simplest scheme is to minimize the error 

f ma?. 

1 /I 

%nax ~ 
4fya)4(a)da-df) df. (31) 

fmin %in 

instead of the integral of the square of the quantity enclosed 
by two vertical bars at each frequency. Constraints on the 
solution are used a priori in optimization via linear program- 
ming; here we use that +(a) Z- 0. Imposing an upper bound 
on the total volume fraction (maximum packing) can also be 
incorporated but is not essential. After discretizing the fre- 
quency range by M and &a) in N discrete values we write 

,il Bij~(aj)-a,,(fi)=ui-Ui, ui,UiaOy i= 1,2,. . . ,M. 

(32) 

Here, Bij is the discretized form of the integral operator in 
(31) and Ui and ni are, as yet, unknown, non-negative vati- 
ables. Now, it can be shown” that minimizing the absolute 
value of (32) is equivalent to minimizing 

i (“i+ui) (33) 

with (32) as a constraint together with the constrains ai, ui 
20 (i= l,..., M) and +(ai)>O (i= l,..., N). Essential here is 
the notion that at the optimum uiu i= 0 for each i, which 
makes the solutions of the two minimization problems (31) 
and (33) identical. 

The above scheme was applied to a number of cases that 
were also examined using the Tikhonov method. It was 
found that, in general, the linear programing scheme pro- 
duced inferior results. A typical example is shown in Fig. 18 
where the Tikhonov method is seen to yield far better results 
for the size distributions. This technique also did not yield 
good inverse results for the case of glass particles. 

V. CONCLUSION 

A theory for the attenuation and wave speed of solid- 
liquid suspensions at low particle volume fractions is de- 
scribed. The theory is shown to be in excellent agreement 
with the experimental data measured in our laboratory. 
Tikhonov regularization and linear programing techniques 
are employed to solve the inverse problem of determining 
the particle size distribution from the attenuation-frequency 
data. Although these techniques are successful in solving the 
inverse problem in several cases, we have also shown that 
the results are very sensitive to the choice of frequency 
range, the physical properties of the particles, and the nature 
of particle size distribution (unimodal, bimodal, etc.). Since 
the same techniques worked very well for bubbly liquids, we 
attribute the failure in solving the inverse problem satisfac- 
torily to the complex resonance behavior of slurries. We con- 
clude therefore that the prospects of using acoustic probes 
for on-line monitoring of particle size distribution of slurries 
are somewhat limited unless some additional information on 
the particle size distribution (e.g., unimodal) is available. 
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FIG. 17. Results for air bubbles in water. (a) Inverse problem result with a 
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APPENDIX: EQUATIONS FOR A, 

In this appendix we give the set of linear equations for 
unknowns that include the coefficients A, required to calcu- 
late the attenuation from (12) and (19)-(21) or (22). These 
equations are derived from the boundary conditions on the 
surface of a test particle. In addition to the coefficients A,, 

A,, of the solution of (1) outside and inside the particle, re- 
spectively, similar coefficients arise due to the solution of (2) 
and (3), denoted by B, and C, . Note that (3) is an equation 
for the vector A rather than a scalar velocity potential, but 
only the azimuthal component of A is nonzero, hence only a 
scalar coefficient C, . In the following, we use the notation 
zr= k,a, zT= k+, and zs= k,a: 

lo3 

IO2 

? 
i 
u z 
@ 10' 
3 
5 
5 

IO0 

10 

(4 

/ 

1 

lo5 IO6 
FREQUENCY (Hz) 

zJ;(z,) +A,z,h;(z,) +&zT~:(zT) - C,& + 1 h(zs) 

=A,Ycj;(irc) +B”&j;(&) - c”n(n + 1 ,j”(z,)? (Al) 

j,(z,) +A&n(zc) +B,h,(zd- Gh(z,) +z,%s)) 

=Aj”(&)+sJ”(z,)- c”t.j,(z,>+~s.j~ca>~ 642) 

b,[j,(z,)+A,h,(z,)l+B,b,h,(z~) 

=~,6j,(~~)+Bngrjn(ZT), (A3) 

dz,b,[jA(z,) +A,h~(z,)l +BJwT~~(zT)), 

= G(A,6,i$j~(Z,) +B&F~j~(ZT)), 644) 

(- ‘WtL)([(zs2-2z~)jn(zc>-2z~j~(z,)l+A.[(z~ 

- 2z91,(z,) -2z~h~(z,)l +&Hz:- 2z$h(zd 

- 2z;qz4 + C,2n(n + 1 )[z,g(z,) -Udl) 

=A,[(02pa2-2~~)j,(z,)-2~~j~(z,)l 

+B,[(w2pa2-2CL~*2,)j,(zT)-2~~~j~(ZT)1 

+ C,2&n+ l)[FJj~(Z,)- jn(Z,>17 645) 
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FIG. 18. Comparison of the results for the inverse problem of polystyrene 
particles (exact solution is the solid line) using the linear programming 

method (..V..) and the Tikhonov method (--Cl--). In both cases the attenua- 
tion was cut off at the same frequency, indicated by the square in Fig. 12(a). 

( - mp)(zcjA(zc) -j,(z,) +A,[z$k-h,(z,)1 

+ Bn[z~h;(zd - h,(zdl- W2)[z,2~3z,) 

+b2+n-w4z,)l) 

= &~,[~cj~(~c) - jnGc>l +fi,tFTjA(Zr) -j&T>1 

-(C,/2)[~j~(z,)+(n2+n-2)j,(2,)l). W) 

Here, b, and bT are given by 

b =(1-y)02, 
c 

PC2 

b =- T -&[ u2-($- %),;I, (A7) 

with p the thermal expension coefficient and cr the liquid- 
equivalent of the speed of sound for spherical compressional 

waves in an elastic isotropic solid cl = $-- (A +2~/3)lp. The 

Lame constant x is not really needed when the speed of 
sound (c) of longitudinal compressional waves is specified, 

as we can also write c:=c2(1-4&(3pc2)). The above 
equations have also been given by Epstein and Carhart’ and 
Allegra and Hawley.6 However, in both there are typographi- 

cal errors: in Ref. 5, the last jA(FS) in (A2) is erroneously 

Spelt et a/. 

replaced by hA(z,); in Ref. 6 the signs of both 
(n2+ n - 2)-terms are wrong, while the last h,(z,) on the 

left-hand side of (A6) has the argument y instead and the first 

z, after C, is replaced by FS. Not correcting the typographi- 
cal errors in Ref. 6 would have altered the results signifi- 
cantly. 
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The United States is encumbered with a huge amount of liquid radioactive waste 

as a result of the nuclear weapons program. The waste is stored in underground tanks, all 

of which need to be emptied and many of which are leaking. In order to process the 

waste it must be transported by pipeline to the treatment centers. The waste contains 

suspended solids so plugging of the pipeline is a major concern. There is a need to 

characterize the waste during transfer in order to reduce the risk of plugging. 

Ultrasound is an attractive choice for this application. It has the ability to 

penetrate optically dense liquids and its non-intrusive nature protects operators from the 

harmful effects of radiation. 

Previous work on using ultrasound to characterize slurries examined relatively 

ideal systems of monodispersed particles in water. No work was done on systems with 

volume fractions less than 0.05. Theory is available which accurately predicted 

attenuation at low volume fractions but it was not known if reliable experimental data 

could be collected under these conditions. 



Attenuation measurements are performed on systems of soda-lime glass beads 

(radius = 16 n ) m in water, clay in water, and a nuclear waste simulant consisting of 

precipitated salts in saturated supemate. Solids volume fraction studied range from 0.004 

to 0.05. Both a Pulse/FFT and a Toneburst method are used to measure attenuation. The 

Pulse/FFT method is found to be more accurate. As expected the relationship between 

attenuation and volume fraction is found to be linear, and it is found that reliable 

attenuation measurements can be made in all three systems even at solids volume fraction 

of under 0.01. 

Sound speed is measured in systems of soda-lime glass beads (radius 16 pm) and 

Potter’s beads (radius 60 pm). Volume fraction ranged from 0 to 0.4. Experiments 

indicate that particle size has little effect on sound speed. Experimental data of sound 

speed in soda-lime glass slurries agrees well with theory. Experiments performed at low 

volume fraction showed that with very precise monitoring of temperature it is possible to 

use speed to characterize slurries, however, practical considerations weigh against this. 

Future work involves automating the procedure to measure attenuation and 

creating an on-line monitor on a spoolpiece that can be installed in a flow loop. The 

system will monitor slurry and the suspending liquid simultaneously and give data in real 

time. 
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1. Introduction 

The cold war era nuclear arms race has left the United States encumbered with a 

large amount of radioactive waste. Currently hundreds of millions of gallons of 

radioactive waste are stored at several sites across the country. The waste, contained in 

underground tanks, is a non-uniform mixture of sludge, supemate, and salt cake. 

Generally, the major components are sodium nitrate and sodium nitrite. Additional ions 

present include aluminate, hydroxide, and carbonate. The supemates are basic, with pH 

ranging from 10 to greater than 14. Radioactive components in the supemate and 

dissolved salt cake are materials such as 99Tc, 13’Cs, 23sPu, 237Np, and 9oSr (Golcar 2000). 

Production of new weapons grade radioactive material in the United Stated has 

stopped and the cleanup phase has been in progress for a number of years. The fact that 

many of the storage tanks are leaking only increases the urgency to deal with the 

problem. 

In order to treat the waste it must first be removed from the storage tanks and 

transported to treatment centers located on site. The tanks are located some distance from 

the treatment centers, some as far as six miles away (Hylton, 2000). For safety reasons, it 

is often desirable to transfer the materials by pipeline, rather than tanker truck. Plugging 

is a major concern when transferring slurries by pipeline. If a pipeline becomes plugged 

there are major costs in money and time, as a new pipeline has to be laid, and the old 

pipeline remediated. As of 1996 five of the six cross-site pipelines at the Hanford Site 

were unusable due to plugging (Hudson 1996). The risk of plugging can be reduced by 
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careful monitoring of the slurry properties (suspended solids levels, density, and 

viscosity). 

The treatment of nuclear waste is a complicated process, consisting of many 

different operations run in series and in parallel. Many of these operations involve 

handling of liquid/solid systems. For example, one of the methods for treating 

radioactive tank supemate involves using an adsorbent such as crystalline silica titanate to 

remove the radioactive cesium ions and then imprisoning the now radioactive absorbent 

in a glass frit. This disposal method largely involves the handling of solid/liquid systems 

and some method of characterizing the flowing stream is needed. 

Ultrasound has several properties which make it an attractive choice for 

characterizing radioactive slurry. It has the ability to penetrate optically dense slurries. 

When used properly it can give accurate information even in the presence of small 

amounts of gas bubbles. It is nonintrusive, protecting the operator from the effects of 

radiation. It also is a very sensitive technique and can give accurate readings at very low 

solid concentrations. 

Two different kinds of information that can be obtained from ultrasound are 

attenuation and speed. Attenuation is the absorbency of sound by the material. It is 

almost always highly dependent on the frequency of the ultrasonic signal and the size and 

physical properties of the particles. Attenuation is highly sensitive to the presence of 

solids particles and gas bubbles, and is somewhat tolerant of changes in temperature. In 

theoretical terms, attenuation is the imaginary part of the wave number. 

The three modes of attenuation are viscous, thermal, and scattering. The 

nondimensional number k,,a, which is the product of particle radius and wavenumber, can 
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be used to determine which modes are significant. The viscous energy dissipation results 

from translational, volume, and shape oscillations of particles. Thermal attenuation arises 

as a result of non-adiabatic changes in temperature of the particles, as the particles expand 

and contract due to the passage of a sound wave. Viscous and thermal attenuation are 

most significant at small values of k,,a. Thermal attenuation is particularly significant at 

low k,,a when the densities of the particles and liquid are similar. Attenuation due to 

scattering is the major source of attenuation at higher frequencies, i.e. when kc,a = 0( 1). 

Other kind of information that can be obtained using ultrasound is sound speed. 

In many materials (such as water) speed is nearly independent of frequency. However, in 

some systems such as suspensions, speed is dependent on the frequency of the ultrasonic 

signal. Such systems are termed highly dispersive. Speed is not very dependent on 

particle size and is not as sensitive to the presence of solid particles as is attenuation, 

particularly when the speed of sound in the solid phase is close to the speed of sound in 

the liquid phase. Speed is strongly dependent on temperature. 

There are several methods currently being evaluated for the characterization of 

radioactive slurries. A study was conducted which evaluated 12 in-line or in-tank 

monitoring systems. Based on this study, two systems were selected for testing with 

radioactive slurries (Hylton and Bayne, 1999). One method, studied by Hylton (2000) 

uses Coriolis meters, which measure density of a material. Two meters are used, one 

measuring the density of the slurry and another the density of the supernate. Solids 

loading is calculated assuming a constant solids density. The other method given 

consideration is an ultrasonic probe developed by Argonne National Laboratory (Hylton 



and Bayne, 1999). Using a 1 mHz transducer, the probe simultaneously measures 

ultrasonic attenuation and speed. 

Current slurry characterization techniques leave much to be desired, particularly at 

low solids concentrations. The Argonne ultrasonic probe has an error of over 50% at 

solids concentrations under 5 weight percent (Hylton 1999). This error is caused in large 

part by the presence of bubbles in the waste stream. The work presented in this study will 

show that when used properly ultrasound can give reliable data even in the presence of 

small amounts of gas. 

2. Literature Review 

Many researchers have performed theoretical and experimental work involving 

measuring and predicting speed and attenuation in multiphase mixtures. Since the focus 

of this paper is on experimental studies of multiphase systems literature involving 

experimental studies of multiphase systems will be discussed. 

2.1 ATTENUATION: 

Allegra and Hawley (1972) studied attenuation as a function of frequency in 

polystyrene particle-water systems. They studied particles ranging in radius from 0.044 

to 0.635 microns, in the regime where thermal attenuation is the predominant 

phenomenon. In addition to reporting the data on attenuation these investigators also 

developed a theory. 

Atkinson and Kytomaa (199 1) measured attenuation and speed in clay-water and 

silica-water systems. The silica particles studies were of radius 500 pm, and volume 

fraction ranged from 0.05 to 0.6. The effective-medium approximation theory they 



developed agreed well with their experimental data, except when kcla became 0( 1) and 

multiple scattering effects become dominant. 

Greenwood et al. (1993) studied attenuation in kaolin clay - water systems. They 

used a toneburst method where the system is interrogated by an ultrasonic signal of 

constant frequency. The frequency range studied was 0.5 to 3.0 MHz, and the maximum 

solid concentration was 44%. They found that for their system attenuation appeared to 

depend linearly on frequency over the range studied. Several different possible 

explanations are given for this behavior. The two given the most consideration to yield a 

linear relationship between attenuation and frequency are a combination of viscous and 

thermal attenuation or a hydrodynamic model which considers the increase in viscosity as 

the slurry becomes more concentrated. 

Norato (1999) developed the experimental techniques used in this study to 

measure attenuation. Systems studied included polystyrene-water and various types of 

glass beads in water. Volume fractions studied ranged from 5% to 45%. Also studied 

was the effect of the presence of small amounts of gas on attenuation in solid-liquid 

systems. 

Spelt et al. (2000) studied attenuation in polystyrene slurries and concentrated 

suspensions of glass particles. An effective medium theory was used to predict 

attenuation. Toneburst and Pulse/Fast Fourier Transform (FFT) methods were used to 

measure attenuation experimentally (Norato 1999). It was, found that the theory matched 

the experiment well at volume fractions below 0.3. 



2.2 SPEED 

McClements and Fairley (1990) developed a technique to measure the speed of 

sound in a liquid. This method uses a dual reflection pulse-echo cell to cancel out any 

delay in the electronics, thus giving an excellent time-of flight measurement, accurate to 

f0.3 m/s. McClements later (1991) employed a Fourier transform to determine 

ultrasonic speed as a function of frequency. These investigators used speed to determine 

(among other things) sugar contents in fruit juices. The method developed by 

McClements and co-workers was adopted for use in this study. 

Tsouris et al. (1995) used a pulse-echo method to determine local volume fraction 

in liquid-liquid dispersions. A weighed average model, corrected for reflection and 

refraction, was used to predict volume fraction from time-of-flight measurements. No 

correction was made for delay in the monitoring equipment. 

Cowan et al. (1998) used a method similar to McClements and co-workers to 

measure phase speed in systems of glass beads of average radius 0.438 mm. They 

studied the scattering regime with frequencies between 1 and 5 MHz and volume 

fractions from 0.2 1 to 0.61. An effective medium theory was employed which agreed 

well with the experimental data. 

2.3 CONCLUSIONS 

Considerable work has been performed studying ultrasonic attenuation in 

multiphase systems, both experimental and theoretical. Most experimental work studied 

systems of higher volume fraction particles, and little work has been done examining 

volume fractions under 5%. The work done by Norato (1999) proved that current theory 



predicts attenuation well at low volume fraction but did not determine if reliable 

experimental data can be collected at low volume fraction. In addition, the systems 

studied were fairly ideal (monodisperse and very well characterized), and were not very 

representative of actual radioactive waste. 

Ultrasonic speed work has concentrated on time-of flight measurements, generally 

ignoring dispersive effects, with the exception of the work done by McClements and co- 

workers and Cowen et Al. In addition, most speed experiments studied emulsions or 

other liquid-liquid systems. Little work has been done studying ultrasonic speed in solid- 

liquid systems or in systems with significant dispersive effects. 

Accordingly, the purpose of the work in this study is twofold. The usefulness of 

attenuation in characterizing low volume fraction slurries will be determined. Since 

speed is more tolerant of changes in particle size than attenuation the usefulness of speed 

in characterizing low volume fraction slurries will also be determined. 

3. Experimental 

3.1 ATTENUATION BACKGROUND: 

Attenuation as a function of frequency is measured for three systems: (a) soda- 

lime glass beads in water (referred to as the SLG system), (b) a physical radioactive waste 

slurry surrogate of Bentonite and kaolin clay in water (referred to as the BKC system), 

and (c) a chemical radioactive slurry surrogate consisting of a crystallized salt solution in 

supemate (referred to as the CSS system). The volume fraction range studied is 

approximately 0.005 to 0.1. Multiple replicates are performed to ensure reproducibility 

of data, and determine the error in the results. 



The term ‘attenuation” that has been used throughout this discussion is more 

appropriately called excess attenuation - that is, it is the additional attenuation of sound 

due to the presence of solids in the suspending liquid. Excess attenuation is determined 

by measuring the amplitude of the ultrasonic signal in the slurry (hereafter referred to as 

the sample reading) and comparing that to the amplitude of the ultrasonic signal in the 

pure liquid (referred to as the baseline reading). Since electrical transducers are used to 

create and measure the ultrasonic signal the amplitude is proportional to the voltage 

created by the transducer. Thus, for a given frequency and transducers d distance apart 

the attenuation is determined by: 

a = -11, 

d 
(1) 

where vslurry is the amplitude of the electrical signal produced by the transducers 

interrogating the slurry system and Vliquid is the amplitude of the electrical signal 

produced by the transducers interrogating the suspending liquid alone, with no solids 

present. 

Two different methods are used to obtain voltage information at a specific 

frequency. The first method employs a spike pulse waveform followed by an FFT 

analysis. The other method uses a waveform of only one frequency (a toneburst). The 

voltages can then be read directly off of an oscilloscope and compared. 

The spike pulse / FFT method as depicted in Figure 3.1 is by far the easier and 

more accurate way to measure attenuation. An ultrasonic pulse generator (Panametrics 

5052PR) generates an electric pulse and sends it to the emitting transducer. The actuated 
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Figure 3.1: Schematic diagram of Pulse/FFT setup used to measure attenuation. A spike 
pulse is generated by the pulser/receiver and is transmitted to the transmitting 
transducer which is in contact with the sample. After traveling through the 
sample and being acquired by the receiving transducer the pulse is routed 
through the pulser/receiver to the oscilloscope. 
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emitting transducer transmits an acoustic pulse through the sample actuating the receiving 

transducer, where the signal is transmitted to and read by an oscilloscope (Lecroy 

93 1 OA). An FFT analysis of the amplitude is performed on the spike pulse, outputting 

voltage as a function of frequency for all of the component frequencies of the pulse. This 

procedure is performed both on the suspending liquid and the solid-liquid slurry. The 

voltages are used in eqn. 1 to calculate the attenuation. 

The toneburst method as depicted in Figure 3.2 is somewhat simpler in that no 

Fourier transforms are necessary, but is more tedious because an experiment needs to be 

run for each specific frequency for which a measurement is made. A computer controlled 

toneburst card (Matec TB 1000) is used to generate a signal of a constant, specific 

frequency, and transmit that signal to the send transducer. Again, the signal actuates the 

emitting transducer, propagates through the sample, and actuates the receive transducer, 

where it is read by the oscilloscope. The peak-to-peak voltage of the signal is calculated 

and these values are used in eqn. 1 to calculate attenuation. 

It is instructive to describe the method of data capture by the oscilloscope. In 

order to minimize error due to abnormal waveforms, and random noise, the oscihoscope 

actually takes an average of a certain designated number of spike pulses or toneburst 

sweeps before the FFT or amplitude calculation is made. The number of sweeps used to 

calculate the average is important because it determines the sampling time. If the 

sampling time is too long significant settling of the suspended solids in the test cell may 

occur, causing error due to appreciable variation of the actual suspended solids 

concentration in the test cell. If the number of sweeps taken is too small then random 

signal noise may be significant. This may be less of a problem in pipe slurry 
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Figure 3.2: Schematic diagram of toneburst setup used to measure attenuation. A 
toneburst card located in a PC generates an electrical signal of constant 
frequency and transmits that signal to the transmitting transducer which is in 
contact with the sample. After traveling through the sample and being 
acquired by the receiving transducer the pulse is routed through the toneburst 
card to the oscilloscope. 
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measurements. It was found that 50 sweeps produced an acceptable average waveform 

with little noise, and had a short enough sampling time (-2 seconds) that settling of the 

slurry was insignificant. This finding is reinforced using Stokes law - under average 

experimental conditions terminal settling velocity is 3.4x 1 Om4 m/s, giving a 6.7x 1 Om2 cm 

drop during the two second sampling period. 

As mentioned above, the spike pulse / FFT was found to be the preferred method 

for measuring attenuation. It was found to be much more accurate and consistent. The 

data it produces have much less noise than data resulting from the toneburst method. 

This is mainly due to the fact that only 2 experiments need to be performed using the 

pulse/FFT method (sample and reference) per pair of transducers, while up to 60 

experiments per pair of transducers would be needed using the toneburst method to cover 

the same range and resolution. Nevertheless, both methods were employed to prove the 

consistency of the spike pulse/FFT. 

The transducers used were immersion transducers made by Panametrics. Like a 

speaker, a specific transducer can only create/read ultrasonic signals in a specific 

frequency range. In order to cover the entire range desired (0.5 to 13 mHz), different 

transducers with different center-line frequencies must be employed. Five different pairs 

of transducers were used in this study, with centerline frequencies of 1 mHz, 2.25 mHz, 5 

mHz, 7.5 mHz, and 10 mHz. See Appendix III for the frequency range, model number 

and serial number of all transducers used. 

The test cell used for all attenuation experiments was a Plexiglas vessel with a 

nominal pathlength of two inches. The two inch pathlength was chosen because 2 inches 

is the diameter of the pipe used to transfer slurries at Hanford. The cell used can 
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accommodate transducer pairs with centerline frequencies of 1 MHz to 10 MHz. See 

Figure 3.3 for the schematic of the cell. 

3.2 ATTENUATION EXPERIMENTS 

3.2.1 SODA LIME GLASS 

The first system studied is soda-lime glass beads in distilled water. Volume 

fraction ranged from 0.004 to 0.05. The particles, supplied by CataphoteB , Inc., have 

an average radius of 32 urn, and standard deviation of 7.6 urn. Particle density is 2.54 

g/cm3. See Table 3.1 for further information on physical properties. 

Soda-lime Glass Water 
Density (g/cm’) 
Thermal Conductivity 
(J/K-cm.s) 
Specific Heat 

(J/g W 

2.54 1.0 
9.6 x 1O-3 5.87 x 1O-3 

0.836 4.19 

Thermal Expansion Coefficient 

(K-‘1 

3.2 x 1O-6 2.04x IO”’ 

Attenuation Coefficient per fz 1.0x lo-l5 2.5 x IO-I6 
(s*/cm) 
Sound Speed 5.2 x 10’ 1.48 x 10’ 
(cm/s) 
Shear Viscosity 1 .Ol x 1o-2 
(g/cm.?) 
Shear Rigidity 2.8 x 10” 
(g/cm.s’) 
Table 3.1: Physical properties of Soda-lime glass / water system. Properties are from 
Kinsler et al. (1982) and Bolz (1973) 

Slurries were prepared by weighing a calculated amount of solids into a 

disposable beaker and then adding the correct amount of water. Volume fraction <D was 

determined by: 
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Figure 3.3: Schematic diagram of attenuation test cell. Cell is constructed of Plexiglas 
with a nominal pathlength of two inches. Transducers with centerline 
frequencies of 1 MHz to 10 MHz are mounted on each side to complete the 
cell. 
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gsolids 

Q= volumesolids = psolids 
vo~umeso~ids + VolUme/iquid gsolids + gliquid 

psolids Pliquid 

(2) 

where 

gsohds = maSS f o solid particles added (g) 
gliquid = mass of suspending liquid added (g) 
psolid = density of solid particles (g/cm’) 
ollquld = density of suspending liquid (g/cm3) 

Slurries were prepared immediately prior to testing. The test cell was prepared with the 

appropriate transducers, and the pathlength measured using a dial caliper. The sample 

was hand stirred with a stainless steel spatula and a reading was taken, 

In order to determine the best frequency range for studying low Q slurries, a 

sample was interrogated with all 5 pairs of transducers. In addition, both the pulse/FFT 

and toneburst methods were employed. 

The standard method of obtaining a baseline reading had been to till the cell with 

water, take a reading, and empty and dry the cell. Slurry would then be added to the cell 

to collect the sample reading. This method had several disadvantages - it was time 

consuming and it introduced more possibilities for error. For example, the handling of 

the cell necessary to empty, dry, and refill it could cause the pathlength to change 

slightly. In addition, the time lapse between gathering the two signals could lead to 

slight changes in the waveform produced by the pulser/receiver or toneburst card. The 

attenuation calculation is based on the assumption that the slurry and the suspending 

liquid are both subjected to the same waveform. Any change in that waveform could lead 

to error. 
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Without stirring, the soda-lime glass beads settle to the bottom of the vessel 

quickly. This behavior was exploited to improve the method of determining the water 

signal. Since only a small amount of solids was used for these experiments, after they 

settled the space between the transducers contained only distilled water. Therefore, the 

completely settled system was used to acquire the baseline reading. Immediately after the 

baseline reading was taken, the system was stirred until all solids were resuspended and 

the sample reading was taken. 

3.2.2 CLAY SURROGATE 

After preliminary work with soda lime glass at low CD it was decided to attempt to 

use ultrasound to characterize a system more representative of the nuclear waste. A 

number of surrogate slurries have been developed to simulate nuclear waste (Golcar 

2000) one being a primarily rhealogical surrogate composed of bentonite and kaolin 

clays. The slurry selected for these experiments consisted of two parts (dry weight) 

kaolin to one part bentonite. 

Kaolin clay is composed mostly of silica and alumina arranged in alternating 

layers. A particle is generally square shaped, with sides less then 1-2 ym in length. The 

particles, held together by strong hydrogen bonds, can be 70 to 100 layers thick. (Holtz 

and Kovacs, 198 1) Bentonite is actually a mixture of several different types of minerals, 

with smectite as the major component (Grim 1968). 

Since Bentonite particles swell when added to water it is important to prepare the 

slurries some time before testing. A LighninB mixer was used to provide the high shear 

that is needed to properly disperse clay. Kaolin was added to water and the mixture was 
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stirred until the clay was dispersed (usually about 15 minutes). Then bentonite was added 

and the mixture was stirred again. The slurries were allowed to sit overnight and then 

mixed again before testing. 

The test procedure was similar to that performed on the soda lime glass. Only one 

set of transducers (10 MHz) was used. The pulse/FFT method was the only testing 

method employed. Since lay does not settle readily, a baseline reading was acquired in 

distilled water. Since the density of the clay particles was not known slurries were 

prepared on a weight fraction basis, with weight fractions ranging from one to five 

percent. 

3.2.3 CRYSTALLIZED SALT SOLUTION 

The third system studied is a crystallized salt solution proposed by researchers at 

the Hanford site to represent the chemical and physical behavior of an average 

composition of Hanford supemate nuclear waste containing suspended saltcake particles, 

with the exception of the radioactive properties. All of the major components in the 

waste tanks are present in the chemical slurry surrogate, and they are in the correct 

proportions. See Table 3.2 for the chemical species present, and the concentration of 

each species: 

- Chemical Feed Solution Concentrated Solution Weight Percent 
Species tw (Ml _---. 
NaOH 1.61 2.3 5.9 
NaAl(OH), 1.54 2.2 16.3 
NaNO, 2.59 3.7 20.3 
NaNO, 2.24 3.2 14.3 
W&O, 0.42 0.6 4.1 
H,O 31.7 

Table 3.2: Crystallized Salt Solution components 
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In brief, the solution is prepared by dissolving all of the solids in water and then 

evaporating the solution down to 70% of the original volume to form a precipitate. The 

complete procedure is described in Appendix I. The mixture is centrifuged to separate 

the solids (precipitate) from the liquid (supemate). The solids are stored wet to prevent 

caking and the density of the supemate is measured. 

Again, the procedure used to determine the attenuation of the surrogate slurry was 

similar to that used on the soda lime glass beads, except that only the 10 MHz transducers 

and the pulse/FFT method were employed. The baseline reading is acquired in supemate. 

Solids are added gradually with intermediate testing to get attenuation data at different 

weight fractions. 

The actual volume (or weight) fraction studied is not known, since it is difficult to 

measure the density of the solids, and the solids are not dried out completely. 

Accordingly, the following procedure is employed to estimate the weight percent solids 

in the slurry. Assuming a packing efficiency of 60% and a solid density of 2.2 gm/cm3 

(typical of sodium salts, according to Weast, 1972) an approximate dry weight percent of 

the concentrated solids feedstock is given by: 

1C??Z3 
&r-y = Wwet x ____ x 0.6 x 3 

1.91g cm3 

where: 

(3) 

0.6 = Assumed packing efficiency (volume fraction of concentrated solids) 
2.2 g/cm3 = Assumed dry solids density 
1.91 g/cm3 = Assumed density of wet solids 
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3.3 SPEED BACKGROUND 

Previous work (Norato 1999) characterizing slurries using ultrasound had dealt 

with measuring attenuation exclusively. Theory was developed (Spelt et al., 2000) that 

predicted ultrasonic speed. In order to test the theory and evaluate the utility of speed 

information in characterizing slurries it was deemed desirable to develop a method to 

measure ultrasonic speed as a function of frequency in liquid slurries. The technique 

developed by McClements and co-workers (1991) was selected because it is proven 

successful and is similar to the method already in use to measure attenuation 

The technique uses a dual reflectance method, along with an FFT, to measure 

sound speed. The experimental setup, shown in Figure 3.4, is very similar to the Spike 

Pulse/FFT setup used to measure attenuation. The test cell, as depicted in Figure 3.5, is 

similar to that used to measure attenuation, but only one transducer is used. Instead of 

being in direct contact with the fluid, the transducer is in contact with a Plexiglas buffer. 

Ultrasound gel (Parker Laboratories Scan gel) is used to couple the transducer to the 

Plexiglas. The sample is on the other side of the Plexiglas buffer. A brass reflector plate 

is mounted on the rear of the cell. The reflector plate is constructed of brass due to its 

high impedance and its resistance to corrosion. The reflector is removable and the 

pathlength can be altered by installing a thicker or thinner reflector plate. For these 

experiments two reflector plates were used, a thinner one that gives a pathlength of one 

inch, and a thicker one that gives a pathlength of ‘/z inch. 

A spike pulse waveform is used to energize the transducer. As the sound travels 

through the cell it is actually reflected twice - once at the Plexiglas/sample interface and 
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Figure 3.4: Schematic diagram of setup used to measure speed. A spike pulse is 
generated by the pulser/receiver and is transmitted to the transducer, which is 
coupled to a Plexiglas@ buffer with ultrasound gel. The signal travels 
through the buffer and some signal is reflected back at the buffer/sample 
interface. The remaining signal travels through the sample and is reflected 
off a brass plate mounted at the far end of the cell. The same transducer that 
emitted the signal picks up both reflections and routes the reflected signals 
through the Pulser/Receiver to the oscilloscope. 
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Figure 3.5: Schematic diagram of speed test cell. Cell is constructed of Plexiglas with a 
brass reflector plate. The reflector plate is interchangeable, with current 
plates creating pathlengths of % inch or one inch. A single transducer is 
mounted on one side, coupled with ultrasound gel. The signal passes through 
a buffer rod of Plexiglas (thickness: % inch) before coming in contact with 
the sample. 
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again off the brass reflector at the far end of the cell. See Figure 3.6 for a typical 

waveform produced by this setup. Since travel time through the wires, transducers, 

Plexiglas buffer, and other electrical components is common to both signals the exact 

travel time through the sample can be calculated by subtracting the time of the first peak 

from the time of the second peak. As shown below, by using an FFT to calculate the 

phase difference between the two reflected signals the speed as a function of frequency 

can be measured. 

The test cell must be designed properly in order to produce acceptable data. The 

Plexiglas buffer must be thick enough such that the transducer stops ringing before the 

first reflection reaches it. Plexiglas, like all materials, absorbs sound, and so if the buffer 

is too thick the signal will be attenuated and signal will be lost unnecessarily. In addition, 

the buffer thickness and sample pathlength must be designed so that signals which reflect 

internally in the buffer rod do not interfere with the second echo returning from the brass 

reflector. 

The phase speed is calculated using the following equation (McClements, 199 1): 

c = pathlength x 
360. f 

(w360+SB-Bd -180) 
(4) 

where 

c = phase speed 
f = frequency 

68 = phase difference from FFT 
0, = phase correction due do diffraction (usually negligible) 
n = number of waves - At*f 
and At (above) = time difference between main peaks of the two reflections 
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Figure 3.6: Typical waveform produced from speed test setup. The first peak, at t-6 ps, 
is reflected at the buffer-rod sample interface. The second peak, at t-23 ps, is 
reflected off the brass plate at the far end of the cell. The smaller peaks at t 
-11 ps and t-28 ps are echoes of the larger peaks. 
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The main peaks of the two waveforms are superimposed and a phase FFT operation is 

performed on both. The difference in phase between the first and second echo as a 

function of frequency is determined. The 180 degree correction is required because the 

signal is inverted as it reflects off the brass plate. In practice, it was easier to 

superimpose the waveforms if the second echo is inverted employing software available 

with the oscilloscope. Accordingly, the 180 degree correction was not necessary. 

The speed of sound in water is strongly dependent on temperature. At room 

temperature the speed of sound increases approximately 3 m/s for every degree Celsius 

the temperature is increased. Although this change is small compared to the speed of 

sound in water at room temperature (-1500 m/s at 23 “C) it has a significant effect when 

trying to correctly discern the volume fraction of suspended particles. In order to provide 

better temperature control the test cell (with attached immersion transducer) is placed in a 

water bath (Neslab GP-300). Slurry temperature was maintained at 25 “C +O. 1 O, verified 

by a digital thermometer (Cole-Parmer Thermistor Model 8502-12). 

3.3.1 SPEED EXPERIMENTS 

Speed measurements are made in a system consisting of the same soda-lime glass 

beads described above that were used for attenuation. In order to gauge the effect of 

particle size on speed larger particles, manufactured by Potter’s Industries (P-0060, lot 

0422(98)) are also tested. These particles are larger than those previously studied, with a 

mean diameter of 125 pm and a standard deviation of 19 pm. Although larger than the 

soda-lime glass beads the Potter’s beads are composed of the same material (silica) so 
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physical properties for the Potter’s beads were taken to be the same as those for soda-lime 

glass. 

In order to accurately measure the speed of sound the pathlength must be known 

very precisely. For a ‘A inch pathlength, a measurement error of l/l 000 of an inch results 

in an error of 3 m/s under typical conditions. In order to be able to measure the absolute 

sound speed with as little error as possible it is necessary to measure the pathlength to the 

l/l 0,000 of an inch. Since it is impossible to measure this accurately in a direct fashion, 

the cell is calibrated using distilled water. The cell is filled with water and the transit 

time was measured at different temperatures. The speed of sound in water is very 

accurately known (Lynnworth) so with careful monitoring of temperature the pathlength 

can be calculated to the desired accuracy of l/10,000 of an inch. 

The speed of sound is measured in slurries of both the soda-lime glass particles 

and Potters’ beads suspended in distilled water. Volume fraction ranges from 5% to 45%. 

Initially all 5 transducers were used, to cover the entire available frequency range, but for 

most experiments the 2.25 MHz transducer provided all the data necessary. 

Experiments are also conducted at low volume fraction. Speed is measured in 

soda-lime glass slurries, at volume fractions of 0.004,0.01, 0.03, and 0.05. For these 

experiments a “settled solids” approach similar to that used to measure attenuation is 

used. Speed is measured in distilled water, with the solids settled. Then the system is 

stirred to resuspend the solids, and the speed in the slurry is measured. The difference 

between the two velocities is calculated. 
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4. Theory 

The theory used to predict attenuation in solid-liquid two phase systems is given 

in Spelt et Al. (2000). It uses an effective medium approach to predict viscous, thermal, 

and scattering losses. In this approach the particle is surrounded by a spherical shell of 

fluid. This particle-cell combination is immersed in a uniform suspension (the effective 

medium). The properties of the effective medium are determined by solving the 

governing equations for the particle-cell combination so they are consistent with the 

averaged equations for the suspension. 

The theory in its entirety is very complex and will not be discussed here. A brief 

summary valid for dilute slurries, where one only has to consider the affects of a sound 

wave on a single particle will be given. 

Epstein and Carhart (I 953) first derived the wave equations for the interior and 

exterior of solid particles. They linearized the equations conserving mass, momentum, 

and energy, and eliminated pressure and internal energy using the linearized equations of 

state to give relationships in terms of speed, density, and temperature. The speed vector v 

can be expressed in terms of the vector potential A and a scalar potential 4 as shown: 

v=-V$+Vx A (1) 

with V . A = 0. It is then possible to eliminate temperature and density to give a forth- 

order partial differential equation for 4 and a second order equation in A. The 4 

expression can be split into two second order wave equations by substituting 
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# = $c + &,-, with #e and 4~ being the scalar potentials of the compressional and 

thermal waves. The result is three wave equations: 

(v’ +ka)B, =o 

(V2 +kf)A=O 

(2) 

(3) 

(4) 

The wavenumbers in the above equations are given by 

~=~~l-i(e+~)+(~l-i(e+~)~2 +4f(ii*jJ1;] (5) 

~=$[bi(e+&((bi(e+ri,i'+‘tf(i+ ye))'] (6) 

k, =(l t-i) 
/ '2 

with 

c 1 4p+K w er - 
3 -;* 9 PC2 

(7) 

(8) 

In these expressions c is the phase speed in the pure liquid, p is density, K and p the 

compressional and dynamic viscosities, y the ratio of specific heats (C&J, ‘c the thermal 

conductivity, and 0 = z 
/ KP 

the thermal diffusivity. 
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Similar equations are valid inside the particles, with the dynamic viscosity 

and the wave speed by ((x + 2p / 3) / p)lf2, where x and p 

are the Lame constants. The compressional viscosity of the solid is set to zero. The tilde 

notation refers to quantities 

At small values of e 

simplify to 

inside the particles. 

andf(as in water) the above expressions for kc and kT 

and 

kT = (1 + i)(m I 20)“~ (10) 

Equation (2) and its inside-particle counterpart represent the sound propagation 

through the slurry. The imaginary part of the wavenumber equals the attenuation. The 

bracketed term in equation. (9) is referred to as the ‘diffusivity of sound’. The total 

attenuation coefficients in the liquid and in the solid particle will be treated as additional 

physical properties. The other two wave equations (3 and 4) describe waves due to 

thermal conduction and finite viscosity. Note that the modulus k, in (10) is inversely 

proportional to the thermal penetration depth 4% and k, is inversely proportional to 

the viscous penetration depth J,D / pa. Thermal (&) and shear (A) waves usually have 

very high attenuation and are unimportant. 

It is possible in principle to determine the phase speed and attenuation at arbitrary 

volume fractions using the above equations. The result can be determined by applying 
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boundary conditions of continuity to temperature, speed, heat flux and traction and 

solving the problem numerically. 

The potential 4, outside a particle located at x,can be expressed as: 

a3 

#Jx) = exp(ik, l X) + gi”(2n + l)An&(k,r)P,(p) (11) 
n=O 

where Y = Ix - xl I, p = cos9,0 as the angle between x-x, and k,. The spherical Bessel 

function of the third kind (or Hankel function) h,, corresponds to an outgoing scattered 

wave and I’,, is the Legendre polynomial of degree n. 

Inside the particle centered at x, we have 

(12) 

where j, is the spherical Bessel function of the first kind. Similar expressions are written 

for I&- and A. Expressions with a set of six unknowns for each mode n result. 

Application of the boundary conditions of continuity of speed, traction, temperature, and 

heat flux give six equation with six unknowns for each n. In a few limiting cases it is 

possible to solve for the unknowns analytically. However, it is best to solve the equations 

numerically since it is desired to cover a large range of frequencies. 

After the coefficients are determined, the attenuation can be calculated per unit 

length using the result given by Allegra and Hawley (1972) as: , 

a=-- g- f(yn + OReA n 
n 

(13) 
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When the total volume fraction is small the above method can be extended to 

account for a non-uniform particle size distribution by summing up the attenuation 

caused by each individual particle size present: 

&o,(f) = - %cr &wd~ 
a=0 

(14) 

where &( f ,a) is the attenuation density and @(a)da is the volume fraction of a 

particular size range between a and a+da. Equation (14) is the basis of the computer 

program provided by Dr. Peter Spelt (2000) used with his assistance to calculate 

theoretical attenuation in solid-liquid shmies. 

5. Results 

Experimental results for the three systems studied follow. Included are 

comparisons of experimental results with theory and a study evaluating the 

reproducibility of the experimental data. 

5.1 ATTENUATION IN DILUTE SODA-LIME GLASS BEADS 

Figure 5.1 shows attenuation versus volume fraction at three different frequencies 

- 8 MHz, 10 MHz, and 12 MHz, for dilute soda-lime glass beads in water. Volume 

fraction ranged from 0.04% to 5%. As expected the relationship between attenuation and 

volume fraction is linear, with R2 ranging from 0.9853 to 0.9986. Note that attenuation is 

significant (and measurable) even at very low volume fractions. Figure 5.2 shows the 

data at extremely low volume fraction (less than 2%). 

Figure 5.3 shows a typical attenuation versus frequency curve. Note the 

unexpected maximum at low frequencies. It is suspected that the particles are slightly 
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Figure 5.1: Attenuation versus volume fraction for a slurry of soda lime glass particles 
(radius=16 pm) in water at three frequencies. The frequencies studied are (x) 
12 MHz, (0) 10 MHz, and (+) 8 MHz. 
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Figure 5.2: Attenuation versus volume fraction for a slurry of soda lime glass particles 
(radius=16 pm) at very low volume fraction. The frequencies studied are (x) 
12 MHz, (0) 10 MHz, and (+) 8 MHz. 
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Figure 5.3: Typical attenuation versus frequency behavior for a 0.4% (volume) soda lime 
glass slurry. Transducers used are (x) 1 MHz, (*) 2.25 MHz, (0) 5 MHz, (+) 
7.5 MHz, (A) 10 MHz. 
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porous, and this increase in attenuation is due to air entrained in the particles, as the 

behavior is similar to that observed when air bubbles were present in slurry (Norato 

1999). In these experiments the slurry was tested immediately after preparation so there 

is no time for entrained air to diffuse out of the particles. In a subsequent experiment the 

slurry is prepared a week prior to testing, to allow time for any entrapped gas to diffuse 

out from within the porous particles and disengage. As shown in Figure 5.4, the low 

frequency attenuation decreased significantly. It was also noted that the attenuation at 

higher frequencies was essentially unchanged. Gas bubbles resonate at a specific 

frequency which is a function of the size of the bubble. At frequencies much higher than 

the resonance frequency the presence of gas bubbles has little effect on attenuation 

As mentioned previously, several different methods are attempted in order to 

determine the best way to measure attenuation at low volume fraction. Figure 5.5 shows 

a comparison between the pulse/FFT method and the toneburst method. The pulse/FFT 

data are less noisy and are more consistent from transducer pair to transducer pair. 

Figure 5.6 shows the difference between acquiring the baseline signal in the 

settled slurry and acquiring the baseline signal separately. The signal acquired using the 

pulse / FFT method is significantly less noisy. 

5.1.1 COMPARISON WITH THEORY 

As shown in Figure 5.7, the effective medium theory predicts the behavior of the 

system well. Attenuation varied linearly with volume fraction. The slight deviation 

present at lower frequencies may be caused in part by entrained air, as discussed 

previously. 
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Figure 5.4: Effect of time between preparation and testing in soda lime glass slurries. 
The data marked (x) was collected immediately following preparation of the 
slurry. The data marked (0) was collected after that same slurry was allowed 
to sit one week. 
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Figure 5.5: Comparison of pulse/FFT and toneburst methods of measuring attenuation. 
Pulse/FFT data is shown on top, with toneburst data shown on bottom. 
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the data shown on top was acquired separately from the sample signal. The 
baseline signal for the data shown on bottom was acquired by letting the 
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Figure 5.7: Comparison of theoretical prediction and experimental data of attenuation 
versus frequency for slurries of soda lime glass in water. The points 
represent experimental data and the lines represent theoretical predictions. 
The same pair of 10 MHz transducers was used to gather all data. 

Volume 
fractions shown are (0) 0.004, (-i-)0.01, (A) 0.02, and (x) 0.05. 
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5.2 ATTENUATION IN CLAY MIXTURES 

Figure 5.8 displays attenuation versus volume fraction in the clay mixture system. 

Results are similar to those found in soda-lime glass. Attenuation is a linear function of 

volume fraction at constant frequency (R’ ranges from 0.9997 to 0.9999), and increases 

with increasing frequency. There is less scatter with the BKC system than with the SLG 

system. This is probably due to the fact that clay does not settle easily and variations due 

to nonhomogeneity are much less. 

Suprisingly, the linear fit does not pass through the origin, whereas the linear fit 

for the SLG system does. As mentioned before, clay particles swell in water and are not 

as rigid as solid particles such as soda-lime glass beads. The swelling may cause 

unexpected behavior such as that observed. 

5.3 ATTENUATION IN CHEMICAL SURROGATE 

Figure 5.9 displays attenuation as a function of weight fraction in the CSS system. 

The relationship is linear as expected. Also of interest is Figure 5.10, which displays 

attenuation as a function of frequency for -1% (weight) chemical slurry surrogate. The 

relationship between attenuation and frequency also appears linear. The relationship 

between attenuation and frequency in monodisperse systems is usually nonlinear- scaling 

as f ‘I2 at low frequencies and as P at high frequencies. 

There are two possible explanations for this phenomena. The system could be in 

an intermediate state between the viscous and scattering regions where attenuation scales 

roughly linearly with frequency. Although possible, this explanation is unlikely because 

any such behavior would likely be confined to a small range of frequencies. The 
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Figure 5.8: Attenuation versus volume fraction for slurries of clay (2 parts kaolin to one 
part Bentonite, by weight) in water at three frequencies. The frequencies 
studied are (0) 12 MHz, (+) 10 MHz, and (x) 8 MHz. 
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Figure 5.9: Attenuation versus volume fraction for crystallized salt solution system at 
three frequencies. The frequencies studied are (0) 12 MHz, (x) 10 MHz, and 
(+) 8 MHz. 
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Figure 5.10: Attenuation versus frequency for crystallized salt solution. Points represent 
experimental data, the line is a linear fit. 
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attenuation behavior was linear across a relatively broad frequency band (7-13 MHz). It 

is unlikely that a system would be in a transition region over this range. 

A more likely explanation is that the system is highly polydisperse. If the solids 

are composed of small particles with a few much larger particles then an approximately 

linear relationship could result. Small particles would have a small k,,a and be in the 

viscous or thermal attenuation range. Larger particles would have a kc,a closer to unity 

where scattering effects are more dominant. The combination of the two could produce a 

pseudo-linear relationship. 

To explore the issue of a polydispersed system, an effort was made to estimate the 

particle size distribution using a microscopic particle size analysis. A sample of diluted 

slurry is dried on a slide and examined under a microscope. It is observed that there are 

two types of solids - small (-10 urn in length) needle-like particles and larger (-100 urn 

diameter) cubic crystals. Particle size distribution, shown in Table 5.1, is calculated 

from photographs of the system. See Figure 5.11 for photographs of the large particles 

and the small particles. The system is calibrated by taking photographs of a precision 

gradicule. 

Particle Size Range Volume Fraction 
(Diameter, urn) (n = 161 particles) __- ---_-- -- ____- 
O-38 0 
38-77 0.04 
77-115 0.28 
115-154 0.33 
154-192 0.19 
192-230 0.10 
230-270 0.03 
270-t 0.04 
Table 5.1: PSD of CSS solids 



Figure 5.11: Photographs of crystallized salt solution particles. The photograph on top 
shows the larger particles, at a magnification factor of approximately 50. 
The photograph on the bottom shows the smaller particles, at a 
magnification factor of approximately 130. 
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No particle size distribution is available for the needlelike particles as they are too 

small to accurately measure (particularly their diameter) with the apparatus available. 

The approximate average length appear to be 10 urn. 

5.3.1 COMPARISON WITH THEORY 

The program used to estimate attenuation for the soda-lime glass system is for 

monodisperse particles, and cannot be used with the surrogate. Instead, a program that 

considers different particle sizes is used. Since the surrogate system is significantly 

different physically from the water / glass bead system a number of physical constants 

-_-. 
Density (g/cm3) 
Thermal Conductivity 
(J/Kcm.s) 
Specific Heat 

(JkW 
Thermal Expansion Coefficient 

K’) 
Attenuation Coefficient per f 
( s2/cm) 
Sound Speed 
(cm/s) 
Shear Viscosity 
(g/cm.s’) 
Shear Rigidity 

have to be changed. The values used are shown in Table 5.2: 

Solid Supemate 
2.2 (a) 1.48 (b) 

9.6 x 1O-3 (c) 5.87 x 1O-3 (c) 

0.836 (c) 4.19 (c) 

3.2 x 10-“(c) 2.04 x 1O‘4 (c) 

1 .o x 1 o-l5 (c) 2.5 x 10- (c) 

5.2 x 10’ (c) 2.14 x 10’ (b) 

1.48 x 10-l (b) 

2.8 x 10” (c) 
(g/ems’) -- 
Table 5.2: Physical constants used for theoretical calculations for CSS system. 
a: estimated (Weast, 1972) 
b: measured 
c: Taken to be the same as that for soda-lime glass beads 

Note that due to the nature of the surrogate system several parameters could not be 

measured. They are instead estimated using average values of sodium salts given in 

Weast (1972) or taken to be the same as those of the soda-lime glass / water system. 
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Attenuation is a linear function of volume fraction at low volume fraction so only 

one volume fraction needs to be used for comparison. All computer simulations are run 

with a total solid volume fraction of one percent. 

As a first approximation the system is taken to have two particle sizes - small (5 

urn radius) and large (50 urn radius). The parameter varied is the ratio of the volume 

fractions of the two particles. As shown in Figure 5.12, a ratio of 70% (volume) smaller 

particles to 30% (volume) larger particles is consistent with experimental data. 

Efforts to more accurately characterize the surrogate system using the measured 

particle size distribution met with mixed success, The two particle model explained 

above was modified so that the smaller particles were still taken to be spheres of 5 urn 

radius, while the larger particles were of several particle sizes as shown in Table 5.1. As 

shown in Figure 5.13, the predicted behavior is not as linear as that found using the 

model which assumed two particle sizes. This could be due to several factors. As 

mentioned previously, not all physical parameters of the slurry system can be measured. 

Some have to be estimated (see Table 5.2). In addition, it is not possible to get detailed 

information on the smaller particles size distribution. Finally, it is not possible to 

determine experimentally the ratio between the small and large particles. 

5.4 REPRODUCIBILITY OF DATA 

Several replicate runs were performed in order to gauge the reproducibility of the 

data for attenuation versus volume fraction plots. Four replicate experiments are 

performed on each of the three systems: SLG, BKC, and CSS. Fresh slurries were 

prepared for each experiment. No slurries were reused. Reproducibility of all three 

systems was acceptable, as shown in Figure 5.14. The SLG and CSS systems showed 
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Figure 5.12: Results of the two particle size model to predict attenuation in the 
crystallized salt solution. It was assumed that the solids had two particle 
sizes, a smaller size with radius of 5 pm and a larger size with a radius of 50 
pm. The ratio of the two particle sizes was varied. Volume fraction ratios 
shown (5 nm:50um) are: (0) 30:70, (x) 50:50, and (A) 70:30. (+) 
represents experimental data. 
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Figure 5.13: Results of expanding the two particle size model to predict attenuation in 
crystallized salt solution to include actual measured particle size information. 
Again it was assumed that the solids were of two different types. The first 
type was still taken to be spheres of radius 5 pm. The larger particles were 
of various sizes, as shown in Table 5.2. Volume fraction ratios shown (5 
pm:larger particles) are: (+) 30:70, (A) 50:50, and (x) 60:40. (+) represents 
experimental data. 
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Figure 5.14: Reproducibility of data in liquid solid systems. Four experimental runs were 
performed on each system, with new slurry prepared for each run. All data 
is at 10 MHz. Systems shown are (top) SLG, (middle) BKC, (bottom) CSS. 
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similar amounts of scatter, having RZ values of 0.992. The BKC system displayed 

slightly more scatter, with an R2 value of 0.983. 

5.5 SPEED EXPERIMENTS 

Figure 5.15 shows the effect of volume fraction on ultrasonic speed in the soda- 

lime glass system and the Potter’s bead system at a frequency of 2.25 MHz over a 

broader range of volume fractions (0.0 to 0.4). The behavior is nonlinear as expected. 

The speeds measured in the two systems are roughly similar. The greatest deviation is 

present when volume fractions are low, less than 20%. The speed in the Potter’s beads is 

less than the speed in the soda-lime glass beads. This is likely due to experimental error. 

Large particles settle much faster than small particles, particularly at low volume 

fractions, and it is very difficult to keep the slurry homogenous. The effective volume 

fraction seen by the transducers could be lower than the actual volume fraction, causing 

the measured speed to be lower than expected. 

Figure 5.16 shows the results of the low volume fraction speed experiments. The 

linear fit is acceptable but practical considerations decided against further consideration 

of using phase speed to characterize low VF slurries. At low volume fractions the change 

in speed due to the solids is very small (less than 10 m/s, or 0.7% of the total speed) and 

any change in temperature or any non-uniformity of the slurry is significant. 

No speed experiments were performed with the CSS system. In order to calculate 

the theoretical attenuation in the CSS system the ultrasonic speed in the supemate is 

measured. The value is found to be quite high - -2200 m/s, and rather close to the 

expected speed in the salt (-2500 m/s). Thus any change in speed due to the presence of 
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Figure 5.15: Effect of volume fraction on phase speed in solid-liquid slurries. Particles 
are (x) Soda lime glass (r = 16 pm) and (+) Potter’s beads (r = 60 pm). 
Volume fraction ranges from 0.0 to 0.4. 
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Figure 5.16: Phase speed differential versus volume fraction for low volume fraction 
soda-lime glass beads. The phase speed differential is the difference 
between the phase speed in slurry and the speed in the suspending liquid 
(water). Data is represented by points. The line is a linear fit. 
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salt would be very small and difficult to measure, particularly at low volume fractions. 

Accordingly, these measurements were not made. 

5.5.1 COMPARISON WITH THEORY 

Figure 5.17 compares the speed measured in soda-lime glass beads with the speed 

predicted by the computer simulations. The simulation agrees very well with the 

experiment. These results demonstrate that the basic premises of the theory hold for this 

system over a wide range of volume fractions. 

6. Conclusions 

The following conclusions can be drawn from this study. 

The acoustic monitor is shown capable to accurately measure volume fraction of 

solid-liquid slurries in low concentration ranges of 0.4 to 10 volume percent by analysis 

of the attenuation of the transmitted wave. A linear relationship exists in this region 

between attenuation and volume fraction for three slurry systems studied: a) soda-lime 

glass beads in water (SLG), (b) a physical radioactive waste slurry surrogate of Bentonite 

and kaolin clay in water (BKC), and (c) a chemical radioactive slurry surrogate consisting 

of a crystallized salt solution in supemate (CSS). This relationship exists in the presence 

of small amounts of gas bubbles when the frequencies of interrogation are much greater 

than the resonance frequency of the gas bubbles. The frequency ranges studied are 8 

MHz to 12 MHz for all three systems. Replicate experiments conducted for the three 

systems demonstrate linear behavior with regression coefficients of 0.983 to 0.992. 

The theory developed by Spelt et al. (2000) describes well the attenuation- 

frequency behavior for the well characterized SLG system for 0.4 to 5 volume percent 
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Figure 5.17: Comparison of measured phase speed with theoretical phase speed. 
Experimental data is represented by points, while the line represents 
theoretical calculations. Frequency is 2 MHz, temperature 25 “C. 
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slurries. Attempts to apply the theory to the CSS system met with limited success due to 

the complexity of the salt crystals morphologies (at least two different crystal structures 

exist, each with broad particle size distributions), and unknown physical properties of 

these crystals are estimated. 

The sender-receiver mode experimental setup using pairs of transducers mounted 

in a slurry sample cell is employed with fast Fourier transform analysis to obtain the 

attenuation measurements. The technique is the same as that employed earlier by Norato 

(1999) and provides accurate results. 

Acoustic speed through the well characterized SLG slurries can be accurately 

measured using the reflectance method adapted from McClements (1991) for a broad 

range of volume fractions of 5.0 to 40 percent. With proper control of temperature, speed 

can be measured to +0.3 m/s. The theory of Spelt et al. (2000) is in close agreement with 

these data. For low volume fractions (less than 10 volume percent) accurate data can be 

produced with very careful monitoring of temperature. These results show that the 

reflectance method and theory can be a valuable tool to characterizing solids content if 

solid-liquid slurries at large volume fractions. 

7. Future Work 

Future work involves automating the procedure to measure attenuation and 

manufacturing an on-line monitor on spoolpiece to characterize flowing slurries. The 

basic experimental setup will be similar to that currently employed, except the procedure 

will be automatic, controlled by a computer. A computer controlled pulser/receiver will 

be used to generate the spike pulse. The pulse will then be routed through a high voltage, 
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high bandwidth computer controlled multiplexer to the appropriate transducers. The 

multiplexer will act as a switchbox, enabling the use of several different transducers 

without having to manually change the signal wires. The signal will be read on a digital 

oscilloscope card installed in a PC and attenuation will be calculated automatically. 

The baseline signal will be acquired continuously, using the same system used to 

acquire the sample signal. A MottB filter will be used to separate the solids from the 

liquid stream. This stream will pass through a transducer bank and be interrogated by the 

appropriate transducer pairs before being returned to the slurry line. See Figure 7.1 for a 

schematic of the wiring setup and the spoolpiece. 
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Figure 7.1: Conceptual Diagram of Acoustic Monitor on Spool Piece. The unit includes 
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Appendix A: 
Procedure for synthesizing 
Crystallized Salt Solution 

The procedure used to synthesis the surrogate slurry follows. Source is Golcar 
(2000), although a few changes were necessary due to equipment limitations. 

Simulant ID: SY 1 -SIM-91 A 

The simulant is prepared by evaporating (under reduced pressure) excess water from a 
dilute feedstock solution. 

Feed Solution Preparation: 

1. Weigh out the following: 
Compound g needed for 1-L of feedstock 
NaOH 64.4 
NaAI(OH)4 126.23 
NaN02 154.56 
NaN03 220.12 
Na2C03 45.15 

2. To make 1L of solution use a 2 L beaker, starting with about 500 ml water. Use a 
round Teflon stir bar for agitation. 
3. 

4. 
5. 

6. 
7. 

Heat water to about 90 C and add sodium aluminate. Stir and heat until the solution 
is almost clear; waiting too long results in the precipitation of aluminum hydroxide. 
Turn off heat and slowly add NaOH pellets. 
Add sodium carbonate and stir unti1 dissolved. Some cooling may be necessary to get 
all the carbonate into solution. 
Turn heat back on and add sodium nitrite followed by sodium nitrate 
Add water when necessary to dissolve solids, trying to have a total of 900 ml solution 
when finished. 

Slurry Preparation: 

The solution prepared above is evaporated down in a RotoVap until the final volume is 
-700 ml. 

,/ 

1. Assemble RotoVap instrument with accessory hot water bath. Connect vacuum line 
to house vacuum. Connect condenser water line to house cold water. 
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2. Fill RotoVap vessel with 700 ml water, mount in RotoVap, and mark water line on 
outside of vessel with a permanent marker. The purpose of this line is to gauge when 
to stop the RotoVap process. When the slurry level comes even with the marked line 
then the process is over, as the desired volume of 700 ml is reached. 

3. Fill water bath so that water level is 1 cm from the inside lip, with the RotoVap vessel 
immersed. Set water bath to 90°C. 

4. Begin evaporation. Set rotation level at the 9:30 position (-65 r-pm). 

5. Stop evaporation once slurry level reaches the mark placed in step 2. 

6. Allow to cool with stirring overnight. 

Slurry Separation: 

The slurry is separated in a centrifuge (Fisher Marathon 21000 CF). Slurry is placed in 
centrifuge beakers and spun until all solids have settled. The supemate is then carefully 
drawn of. The solids are collected and centrifuged again. 

1. 

2. 

3. 

4. 

5. 

6. 

Fill four 200 ml centrifuge beakers with slurry. Using balance verify that the mass of 
all four vessels is within one gram of each other. 

Centrifuge 20 minutes at 2000 RPM. 

Carefully pipette solid-free supemate into storage vessel. Leave approximately 1 cm 
of supemate on top of settled solids. 

Combine all solids and centrifuge again (2000 RMP, 10 minutes), using a beaker 
filled with water as a counterweight. 

Carefully pipette solid-free supemate into storage vessel. Stop placing the supemate 
into the vessel when it appears that solids are being drawn into the pipette with the 
supemate. 

Remove all remaining supemate and discard. Transfer wet solids into storage 
container. 
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Appendix B: 
Transducer Specifications 

All transducers are produced by Panametrics, Inc. (Waltham, Ma) and are Videoscan 
immersion transducers. 

Model Serial Element Center Bandwidth Operating Range 
Number Number Diameter (cm) Frequency (- 6 dB) (MHz) 

(MHz) w -__ 
V302 211353 2.54 0.935 65.24 0.6 to 1.4 
V302 211354 2.54 0.950 65.26 0.6 to 1.4 
v304 217679 2.54 2.11 63.51 1.4 to 3.0 
v304 217680 2.54 2.08 63.46 1.4 to 3.0 
V308 219594 1.90 4.88 56.41 3.0 to 7.0 
V308 237702 1.90 4.65 60.22 3.0 to 7.0 
V320 222752 1.27 7.95 64.15 5.0 to 11.0 
V320 222753 1.27 8.05 55.90 5.0 to 11.0 
v311 221617 1.27 9.90 64.65 6.0 to 12.0 
v311 266829 1.27 10.4 48.80 6.0 to 12.0 
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Appendix C: 
Speed Measurement Procedure 

B.l Slurry Speed Measurement Procedure: 

For a detailed explanation of the pulse echo technique see McClements and co-workers 
(1990, 1991). The following procedure describes all steps necessary to measure sound 
speed in liquids. 

Data Acquisition: 

1. Turn on cooling water and water bath. Set water bath temperature to 26°C. The test 
cell is constructed of thick Plexiglas@ which resists heat conduction so it is necessary 
to have the water bath at a slightly higher temperature than that desired for the slurry. 

2. Assemble test cell. Choose pathlength desired (%” or 1”) and install appropriate 
reflector plate to back of test cell. Choose transducer required and place in 
appropriate mount, taking care that the transducer surface is flush with the mount. 
Tighten set screw when using 7.5 or 10 MHz transducer. Apply a small amount of 
ultrasound gel to transducer well in test cell. Clamp mounted transducer to test cell 
using supplied screws, taking care to tighten each side gradually. 

3. Attach co-axial wire to transducer and 5052 PR Pulser Receiver, 

4. Fill cell with slurry, place in water bath and allow to come to desired temperature 
(25°C). Monitor sample temperature with digital thermometer. 

5. Turn on oscilloscope. Refer to Norato (1999) for instructions on operating 
oscilloscope. 

6. Verify that 5052PR is set to pulse-echo mode. Switch labeled “l/2” should be set to 
“ 77 1 . 

7. Check fixed settings of 5052PR. Rep rate should be set to zero (minimum setting but 
not on “EXT”). Gain should be set to 40 dB. H.P. filter should be set to “out”. 

8. Set variable settings of 5052PR. Energy, attenuation, and damping are varied 
depending on transducer used and experimental conditions: Refer to Table C. 1 below 
for a starting setting for each transducer: 
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Transducer Energy* Attenuation Damping 
1 MHz 4 46 0 

2.25 MHz 4 46 4 
5 MHz 3 48 10 

7.5 MHz 1 36 10 
10 MHz 1 4 10 

Table C. 1: Suggested settings of Pulser/Reciever. 
* Energy should not be set above 3 for transducers of 
centerline frequency 5 MHz or greater. 

9. Fine tune variable settings of 5052PR. The goal is to create a spike pulse with as high 
an amplitude as possible, that is not squared off when viewed on the oscilloscope. 
Additionally, damping should be set such that the baseline voltage is near zero before 
the first echo is received by the oscilloscope. Once damping is set properly vary 
attenuation until either the first or second echo waveform begins to square off. Then 
increase attenuation by four. 

IO. Check math settings of oscilloscope. Correct settings are: 
Trace (A) - Summed average of Channel 1,50 sweeps 
Trace (B) - Functions, Negation of Ml 
Trace (C) - Phase FFT of (A) 
Trace (D) - Phase FFT of(B) 

11. Gather waveforms. Center second echo in oscilloscope. Have Volts/Division set 
such that the entire waveform takes up about l/3 of the window, but take care that any 
echoing waveforms are not displayed. Activate Trace A and Clear Sweeps to take 
new reading. Then go to Waveform Store and store A to Ml. 

12. Center first echo in oscilloscope, with all settings equal to those used in the previous 
step. Activate Trace A and Clear Sweeps to take reading. 

13. Perform FFT Operation. Turn off Channel 1 and turn on Trace (A) and (B). 
Superimpose waveforms on the main peak of both waveforms. It is helpful to zoom 
in when doing this. Using cursors, determine the time of the main peak of both 
waveforms and record. Keeping the waveforms superimposed, zoom out and activate 
Trace (C) and Trace (D). 

14. Save FFT data. Turn off Trace (A) and Trace (B). Insert floppy disk in drive. Go to 
Waveform Store and set “to FLPY” (floppy). Set Data Format to ASCII, MathCad 
Format. Store “All Displayed” to “FLPY” and press “Do Store”. For more 
information on storing waveforms to floppy see Norato (1999). 
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Cahbations: t 

Calculations are performed in MS Excel. There is a template file for performing phase 
speed calculations named PSPEED.XLS, located in the C:WSPEED directory. 

1. Open PSPEED.XLS in MS Excel. Immediately save file as different filename. Do 
not make changes to PSPEED.XLS before saving it as a different filename. 

2. Follow instructions in spreadsheet. Fill in experimental conditions and peak times 
recorded earlier. Open FFT data files and cut and paste data. 

3. In order to correctly subtract the phase information given by the FFT procedure all 
phase angles must be positive. Therefore make corrections of i-360” to all negative 
phase angles. 

4. Phase speed is now automatically calculated and displayed in column labeled “Phase 
Speed”. 
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The development of nuclear weapons technology during the Cold War Era has left 

a legacy of large quantities of radioactive waste which are stored throughout the US 

Department of Energy (US DOE) Nuclear Weapons Complex. During the proposed 

remediation stages of processing, it will be necessary to characterize and monitor these 

waste slurries by remote methods. 

Acoustic probes have shown promise because of their non-intrusive nature and 

ability to penetrate optically opaque slurries. 

A forward theory for the acoustic response in both dilute and concentrated solid- 

liquid slurries is developed. It is based on ensemble averaging of the equations of motion 

in the solid and liquid phases to obtain expressions for the “effective properties’* of the 

slurry mixture in terms of coefficients which appear in the equations of motion for the 

solid particle. The attenuations predicted from the theory are in generally good 

agreement with the experimental data obtained by Toneburst and Pulse/FFT data 

acquisition methods for solid-liquid slurries of soda-lime glass particles of 14.9 urn and 



65 pm mean radius and polystyrene particles of 79 pm radius at concentrations ranging 

from 5 % to 50 % solids by volume. 

The forward theory is readily extended to systems containing more than one 

dispersed phase, such as particles and gas bubbles, and the theory predictions are 

observed to be in good agreement with preliminary attenuation data obtained in solid-gas- 

liquid slurries of soda-lime glass particles of 14.9 urn mean radius at 5 % and 10 % by 

volume and gas bubbles ranging from approximately 25um to 150 pm radius at volume 

fractions on the order of 10e5. 

An inverse theory is also developed to determine the concentration and solids 

volume fraction distribution in a solid-liquid slurry given its experimentally obtained 

acoustic response. A Tikhonov scheme is employed to regularize the ill-posed integro- 

differential equations and solve them as a linear programming problem. Solution of the 

inverse problem is found to be successful in several cases, but the results are observed to 

be sensitive to the choice of frequency range, the physical properties of the particles, and 

the nature of the particle volume fraction distribution. 
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Chapter 1: Introduction 

1.1 Background 

For nearly five decades, the US government has been building and stockpiling 

nuclear weapons without a well defined plan for the safe and permanent disposal of the 

highly toxic byproducts routinely created by the continual refining and manufacturing of 

plutonium and uranium (Garr 1992). The development and application of nuclear 

weapons technology during the Cold War Era has left a legacy of large quantities of 

radioactive waste which are stored throughout the fifteen facilities which comprise the 

US Department of Energy (US DOE) Nuclear Weapons Complex. The production of 

weapons grade nuclear materials began in the early 1940’s and continued until the late 

1980’s. Nuclear weapons production efforts have generated 100,000 kilograms of 

plutonium. The PUREX (Plutonium Uranium Extraction) process creates more than 340 

gallons of high-level radioactive waste and more than 55,000 gallons of low- to 

intermediate-level radioactive waste for every kilogram of plutonium produced (Garr 

1992). Much of these wastes was stored with little or no documentation (Levi 1992), 

making characterization of the wastes an integral part of any potential remediation 

scheme. 

It is estimated by the DOE that cleanup of the entire nuclear weapons complex 

will take thirty years and require about $100 billion, while some outside estimates predict 

that it will cost at least twice that much (Garr 1992). There are hundreds of waste storage 
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tanks across the US DOE Nuclear Weapons Complex that will require remediation in the 

next several decades. During the proposed retrieval, pretreatment, immobilization, and 

closure stages of the waste processing it will be necessary to characterize and monitor 

various properties of the resulting waste slurries by remote, non-intrusive methods. Real 

time monitoring of the size and volume fraction of solid particles in these slurries by 

acoustic probes has shown promise because of their (i) non-intrusive nature; (ii) 

simplicity of operation (unlike NMR and X-Ray tomography); and (iii) ability to 

penetrate concentrated and optically opaque slurries (unlike laser Doppler anemometry 

which requires refractive index matching). 

Although acoustic probes have been commonly used for monitoring flows of 

single-phase fluids (McLeod 1967), their application to monitor multiple phase mixtures 

has not yet fully reached its potential. A number of investigators in recent years have 

been involved in developing probes for measuring the volume fractions in solid-liquid 

suspensions (Atkinson and Kytomaa 1993; Greenwood et al. 1993; Martin et al. 1995) 

and liquid-liquid dispersions (Bonnet and Tavlarides 1987; Tavlarides and Bonnet 1988; 

Yi and Tavlarides 1990; Tsouris and Tavlarides 1993; Tsouris et al. 1995). In particular, 

Atkinson and Kytomaa (1993) suggest that the acoustic technique can be used to 

determine both the velocity and the volume fraction of solids while Martin et al. (1995) 

claim that the acoustic probe can be used to obtain information on the size distribution of 

the particles. The acoustic probe is also used and commercially available (Malvem 

Instruments, Pen Kern, Inc.) for at-line (i.e., using samples or slip-streams drawn from a 

process line as opposed to on-line, implying simply being immersed in a mixing tank or 
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installed on a process pipeline) particle size measurements in solid-liquid slunies. 

Finally, an acoustic technique is also used for determining bubble size distributions in 

bubbly liquids (Duraiswami et al. 1998). 

The work of the investigators just cited has established the potential of the 

acoustic probe for characterizing/monitoring two-phase flows in relatively ideal, well- 

characterized suspensions. One major obstacle to its wide-spread use in slurry 

processing, however, arises from the interference caused by the presence of small 

amounts of gas. The presence of a low volume fraction of gas bubbles formed, for 

example, by radiolytic degradation processes, cavitation from slurry pumps, or vapor 

entrainment could significantly interfere with the transmitted acoustic signal preventing 

straightforward application of a probe. Since the compressibility of the gas is typically 

several orders of magnitude greater than the compressibility of liquids and solids, the 

acoustic wave propagation is significantly affected even when the gas is present in 

relatively small amounts. 

It may be possible, however, to overcome the interference introduced by the gas 

phase by carefully selecting the frequency range for interrogation and by making use of 

the theory of acoustic wave propagation in bubbly liquids in analyzing the acoustic 

response of the suspension. Since the gas bubbles are formed by a variety of different 

mechanisms and their size distribution in actual flows can vary considerably, an 

important problem to be solved is to determine the noise introduced by the bubbles and to 

remove it from the acoustic signal obtained from the suspension to yield the underlying 

information about the suspended solid phase. 
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1.2 Objective of Research: 

The objective of this study is to investigate the potential applicability of the 

acoustic probe to characterize solid-liquid and solid-gas-liquid slurries. In order to 

achieve this objective it is necessary develop a forward theory to predict the acoustic 

response of a solid-liquid slurry, given an a priori knowledge of its microstructure, which 

can then be compared with experimental results. To be practical, the theory must include 

consideration of both dilute and concentrated slurries. Further, it is desired to develop an 

inverse theory to determine the solids concentration and volume fraction distribution in a 

solid-liquid slurry Tom its experimentally obtained acoustic response. Lastly, it is 

desired to extend the forward theory for solid-liquid systems to solid-gas-liquid slurries 

and compare theory predictions with experimental results for these systems. 

1.3 Organization of Dissertation: 

The work presented in this study consists of four main areas of investigation 

which are discussed separately in individual chapters. The experimental data in each area 

of study are acquired by slight variations of two main experimental techniques. Chapter 

2 gives a literature survey of experimental techniques which are especially relevant to this 

study. Chapter 3 describes the experimental equipment, instrumentation, and procedures 

employed in this study. Chapter 4 presents theory and a comparison with experimental 

data of the attenuation of acoustic waves in dilute solid-liquid suspensions. Chapter 5 

examines the inverse problem to determine the solids concentration and particle size 

distribution in solid-liquid slurries. In Chapter 6 a theory is presented for predicting the 



attenuation of acoustic waves in concentrated slurries, and the predictions of the theory 

are compared with experiments. Chapter 7 gives the preliminary results of attenuation 

measurements in solid-gas-liquid slurries. Finally, conclusions and recommendations for 

future work are given in Chapter 8. 



Chapter 2: Literature Survey 

2.0 Introduction to Literature Review: 

It is the goal of this chapter to present a literature review of experimental 

techniques which are relevant to the work performed in this investigation. Only literature 

pertaining to the experimental studies is presented here. The literature surveys related to 

the various theories are presented in the respective chapters in which they are relevant. 

2.1 Ultrasonic Experimental Techniques: 

2.1.1 Measurements Techniques in Solid-Liquid Systems: 

Experimentation using ultrasound techniques has been going on for quite some 

time. Urick (1947 and 1948), for example, measured the velocity and attenuation of 

ultrasound in solid-liquid suspensions in two different experimental studies using a fairly 

simple ultrasound interferometer which consisted of a “bare” quartz (piezoelectric) 

crystal and relatively simple electronics operated in a pulse-echo mode. Since that time, 

many other investigators have made attenuation and/or phase speed measurements in 

solid-liquid suspensions using more sophisticated instrumentation as technology, 

especially in the field of electronics, has advanced. 

Allegra and Hawley (1972) used a semiautomatic version of the conventional 

pulse technique employed by Kessler et al. (1970) to measure attenuation as a function of 

frequency in suspensions of polystyrene spheres in water as well as in emulsions of 
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toluene and hexane in water. They observed that the attenuation data obtained from the 

liquid-liquid emulsions by their technique yielded good agreement with predictions made 

by the theory of Epstein and Carhart (1953). They also extended the Epstein and Carhart 

theory to solid-liquid suspensions and observed good agreement between the theory 

predictions and experimental results. 

Atkinson (199 1) used a commercially available 1 .O MHz immersion transducer 

(Panametrics Model V302) as a transmitter and a custom made polyvinylidene fluoromer 

(PVDF) receiver to perform phase speed and attenuation measurements in packed beds 

and fluidized beds of 1 .O mm glass beads in water. Atkinson (199 1) reported that the 

advantage of using the piezoelectric polymer, PVDF, as the acoustic receiver was that it 

could be custom made into virtually any size, and that PVDF hydrophones have fairly flat 

acoustic response in the range of DC (implying zero frequency) to several Megahertz. 

Alba (1992) patented an at-line (next to the process line) device which measures 

concentration and size distribution of particles in suspensions. It employed piezoelectric 

transducers mounted in tubes in a vessel wall allowing for variable distance between 

transducers through a sliding contact. The input signal to the transmitter transducer was a 

continuous wave transmitted for a few milliseconds at a time. Attenuation measurements 

were then made at two or more separation distances. This device is reported to be 

applicable to solid-liquid slurries containing particles ranging in size from 0.01 to 1,000 

urn at concentrations from 0.1 % to 70 % by volume. The particle size distribution is 

determined by fitting the resulting measured atte’nuation spectrum to one calculated from 

an a priori assumed distribution, such as log-normal or Gaussian. The main 
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disadvantages of this device are that it requires a knowledge of the materials which 

constitute the slurry and the assumption that the particle population can be described by a 

commonly known type of size distribution. 

Greenwood et aZ.( 1993) employed two piezoelectric transducers of 2.25 MHz 

centerline frequency separated by four inches in a tank to measure the attenuation as a 

function of frequency from 0.5 to 3.0 MHz in a kaolin/water slurry for solids volume 

fractions up to 0.24. The transmitter transducer was driven by signals from a toneburst 

swept frequency generator. Measurements were made by photographing the voltage 

versus frequency of the signal received which was displayed on an oscilloscope screen for 

each slurry concentration studied and comparing the voltage values at six individual 

frequencies for each concentration with the corresponding values in water. The 

attenuation was then calculated from ratios of the slurry voltages at each frequency to 

those in water at the same frequency. It was observed that the attenuation is proportional 

to the frequency and solids volume fraction within the investigated ranges of these 

parameters. These results further demonstrated that it is feasible to use attenuation 

measurements to determine the solids concentration in slurries. 

2.1.2 Measurement Techniques in Liquid-Liquid Dispersion and 

Emulsions: 

Much work has been done in the monitoring and characterization of liquid-liquid 

dispersions using an ultrasonic technique. Bonnet and Tavlarides (1987) developed an 

ultrasonic technique which used the time-averaged model of Kuster and Toksoz (1974) to 
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predict the dispersed phase volume fraction in liquid-liquid dispersions and suspensions 

based on the difference in travel time of the ultrasound in the pure materials and in the 

dispersion. This technique was later improved to account for effects of the dispersed 

phase (such as the sphericity and polydispersity of the drops) on the travel time by 

modifications to the time-averaged model (Yi and Tavlarides 1990; Tsouris and 

Tavlarides 1990; Tsouris and Tavlarides 1993). These modifications allowed the 

technique to be employed under conditions of large dispersed phase volume fraction and 

in situations where the velocity of sound was greater in the organic phase than in the 

aqueous phase. These improvements in the ultrasonic technique eventually led to the 

development of a miniaturized, in-situ pulse-echo ultrasonic probe to measure local 

dispersed phase volume fraction in liquid-liquid dispersions (Tsouris et al. 1995), which 

was also shown to have the capability to detect phase inversion in these dispersions. 

McClements (1992) measured ultrasound velocity and attenuation coefficients in 

10 wt % emulsions of n-hexadecane in water using a device called a Frequency Scanning 

Ultrasonic Pulse-Echo Reflectometer (FSUPER). This device measured the amplitude 

and phase differences, through Fourier analysis, between signals transmitted through a 

Perspex buffer rod in the sample cell and the buffer rod plus emulsion sample. 

McClements (1992) observed good agreement between the data obtained in that study 

and multiple scattering theory for dilute emulsions of dispersed phase volume fraction 

less than 0.13. However, there was some deviation from the multiple scattering theory 

for more concentrated emulsions, especially at low frequencies and small drop sizes. 

McClements (1992) suggested that this deviation between theory and experiment could 
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be due to interaction between the drops, which is not included in the multiple scattering 

theory. Another suggested source of discrepancy was interference with the measurement 

by the incoherent part of the scattered signal. 

2.1.3 Measurement Techniques in Three-phase Systems: 

Okamura et al. (1989) and Uchida et al. (1989), in two related works, used the 

degree of phase difference between acoustic signals obtained in liquid, solid-liquid, and 

three phase systems to empirically determine the concentration of solids in three phase - 

reactors. The main premise of their work was that the presence of the gas phase did not 

affect the phase shift of the signal received which was induced due to the presence of the 

solid particles alone. Therefore, one could determine the solids concentration in a three 

phase slurry simply by measuring the phase lead in the signal received. This technique is 

successful because the transmitted signal never actually encounters any of the gas phase. 

When the transmitted signal does encounter gas bubbles, it is completely blocked. So the 

signals upon which the measurements are made are only signals acquired when no gas 

bubbles are encountered. Therefore, this technique is essentially measuring the solids 

hold up in a two phase system. 

Soong et al. (1995) used a technique based on that of Okamura et al. (1989) to 

perform ultrasonic measurements of the solids concentration in a three phase slurry 

consisting of water, nitrogen bubbles, and glass beads. Particular attention was placed on 

the effects of the gas flow. The bubbles were estimated to be of the order of 3 to 5 mm in 

size. The authors concluded that the attenuation is slightly affected by the gas flow rate, 
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and the transit time of the ultrasonic signal is not affected by the gas flow rate. Both the 

amplitude ratio and the travel time were affected by the solids concentration. 

Soong et al. (1996) performed similar measurements in three phase slurries of 

molten paraffin wax, nitrogen bubbles, and glass beads. In this study, the bubble size was 

also about 5 mm. This study concluded that both the amplitude and the transit time of an 

ultrasonic signal were influenced by the variation of solids concentration in paraffin wax. 

It was, again, found that the variation of nitrogen flow had very little effect on the 

observed transit times. The gas probably did not have a great effect on the measurements 

because of the bubble size. Bubbles in the size range of 3 to 5 mm have extremely low 

resonance frequencies (about 1 kHz). Therefore, the measurements were made at 

frequencies well beyond the bubble resonance frequency. Bubbles of this size would 

only affect the transmitted signal if they were present in a large enough concentration to 

completely block the signal. These techniques are successful because the experimental 

conditions are such that the gas phase is not really relevant to the measurements. 

2.2 Bubble Generation Techniques in Acoustic Studies: 

Carstensen and Foldy (1947) conducted measurements of the transmission, 

scattering and reflection of sound by screens of bubbles. The bubbles were generated by 

a novel device called a microdisperser. This apparatus consisted of two concentric glass 

tubes. The inner tube was of capillary dimension (0.01 cm i.d.), and it carried air at 

approximately 0.5 to 2.5 psi above the hydrostatic pressure at its terminus. The outer 

tube directed a flow of water over the inner capillary tube. The effect of the water flow 
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was to strip air bubbles away from the capillary tube end as soon as they formed. Coarse 

control of the bubble size was provided by varying the water flow rate, and bubbles were 

generated in the size range of approximately 100 to 400 pm. 

Silberman (1957) measured the attenuation and phase speed of sound in bubbly 

liquids by establishing standing waves in steel pipes filled with a gas-water mixture. The 

attenuation was then determined from pressure measurements. The bubbles in this study 

were produced by pumping gas at extremely small flow rates through hypodermic needles 

and other small diameter tubing. This procedure consistently produced bubbles with 

diameters of 1 to 3 mm at approximately 1 % by volume. The Silberman (1957) study is 

considered significant because of its superior control of the bubble size and the accuracy 

of the data which generally agreed well with the theory, except in the immediate 

neighborhood of bubble resonance. 

Kol’tsova et al. (1979) measured the excess attenuation in liquids containing 

between 0.025 % and 0.02 % (by volume) of small hydrogen bubbles. The bubbles were 

created by electrolysis. The cathode of the electrolyzer consisted of 0.02 mm diameter 

copper wire wound around rectangular Bakelite plates at a spacing of 1 to 3 mm. Several 

plates were stacked together with the wire turns interconnected on one side. The wire 

turns on the opposite side were polished such that the wires were severed to form stubs 

from which the bubbles emanated. The anode was a thin platinum wire stretched above 

the cathode. A 3 % NaCl solution was hydrolyzed to create bubbles with radii in the 

range of 7 to 45 pm. These bubble sizes are much smaller than those described in 
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previous investigations, and they are the approximate bubble sizes which are of interest in 

the present study. 

2.3 Photomicrographic Imaging Techniques: 

Photomicrographic techniques of various types have been employed rather 

widely in the past to measure particle, bubble, and drop sizes in a vast array of dispersed 

phase systems. For example, Kirou et al. (1988) employed a photomicrographic 

technique, which was a modification of that developed by Bapat (1982), to measure 

droplet size in an Oldshue-Rushton extraction column. This method consisted of a 

microscope tube interfaced with a 35 mm camera. The microscope objective viewed the 

droplets through a special window port in the wall of the extraction column which was 

designed to prevent droplets from passing between the objective lens and those droplets 

in the objective’s focal plane. Backlighting was provided by a rigid fiber optic light 

conduit which also passed through the port and was bent to face the photographic 

window. The light conduit was coupled to a microflash unit which was synchronized to 

the camera shutter. Droplets were photographed as they passed between the fiber optic 

conduit and the window, and their sizes were measured using a semi-automatic technique. 

Kol’tsova et al. (1979) employed a photographic technique to measure the size 

distributions of microbubbles in their study of the attenuation of ultrasound in bubbly 

liquids. Although not many details of the bubble size measurements are provided, it 

seems that the bubbles were either photographed or viewed visually through optical glass 

windows in the walls sample test cell with the aid of a long distance microscope. 
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Patek et al. (1994) employed a video technique to study the dynamics of phase 

inversion in liquid-liquid dispersions. Their technique allowed for the collection of data 

on the transient mean drop size and the ,transient drop-size distribution during phase 

inversion. The system of Patek et al. (1994) consisted of a stereo microscope with a very 

shallow depth of field attached to a high speed video camera. Sharp images of dispersed 

phase drops were captured by using a strobotach synchronized with the video camera at 

its framing rate. Patek et al. (1994) were able to photograph dispersed phase droplets of 

sizes of 40 pm and larger for accurate measurements at dispersed phase concentrations of 

up to 70 % by volume. The photographs were analyzed semiautomatically via computer 

to yield cumulative and frequency drop size distributions to any mean size. 

Tsouris et al. (1995) employed a high speed imaging system to visualize drops 

produced at the tip of the nozzle of an electrostatic spraying apparatus. This system 

consisted of a Kodak Ektapro Intensified Imager which had a maximum frame speed of 

12,000 frames per second. The imager was connected to a video recorder, a monitor, and 

a printer. This system was employed to measure large drops (approximately 0.5 to 2.5 

mm diameter) of TCE (trichloroethylene) electrostatically sprayed into water. 

Burns et al. (1997) used a video based digital imaging system to measure sizes of 

bubbles generated by various techniques such as electrolysis (electroflotation), electrostatic 

spraying, and dispersed air flotation (DAF). An image analysis system was employed to 

measure the equivalent circular diameter of the bubbles produced. The hardware employed 

depended upon the size of the bubbles produced. For the techniques which produced 

relatively large bubbles (diameters larger than about 100 pm in diameter), the bubbles were 
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photographed by a high speed video camera fitted with a magnifying lens. Smaller bubbles 

(less than approximately 100 pm in diameter) were photographed with the video camera 

interfaced with a long distance microscope capable of magnification of up to 230 to 250 

times. The camera in each set up was interfaced to a video recorder, a monitor, and a 

printer. A light source was set up behind the test cell, shining toward the camera so that the 

bubbles appeared as dark images on a light background. The image analysis system 

consisted of a control computer and software which measured the area of individual 

bubbles and converted it to an equivalent circular diameter. The calibration factor for the 

bubble size measurements was determined by videotaping and measuring a wire of known 

diameter. The identical imaging system was used by Shin et al. (1997) to measure sizes of 

bubbles produced in experiments involving the electrostatic spraying of air into water. 
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Chapter 3: Experimental Studies 

3.1 Experimental Equipment: 

It should be noted that a number of combinations of transducers, mixing vessels 

and test cells, and experimental techniques were employed to obtain the attenuation data 

presented in this study. Therefore, in the caption of each figure which presents 

attenuation data obtained in this study, there is an “experimental parameter number”. 

This number begins with a capital letter “E” (indicating experimental parameter series) 

and is followed by four numbers. Each of the four numbers refers to a particular set of 

parameters used in the experiments to yield that data set. The key to extracting the 

specific experimental parameters from the experimental series number is given in 

Appendix D. 

3.1.1 Mixing Vessels and Test Cells: 

Initial Experiments in solid-liquid systems in this study have been conducted in a 

cylindrical polyvinyl chloride (PVC) vessel of approximately 3.9 L in volume with 15.5 

cm I.D. and 20.5 cm height. Four transducer ports spaced at 90 ’ allow for the 

employment of two transducer pairs in each experimental “run”. A “false bottom” can be 

inserted into the vessel to allow for a smaller sample volume of 1.6 L. 

Also, various other vessels are employed depending upon the nature of the system 

to be interrogated. In instances where the materials under consideration are quite 
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expensive (such as polystyrene spheres) allowing only small slurry volumes, or the 

volume fraction of solids is high making suspension difficult, Plexiglas test cells of 

rectangular “box” geometry and various nominal transducer separation distances are 

employed. There are four different test cells with nominal transducer separation distances 

of 1.27 cm, 2.54 cm, 5.08 cm, and 10.2 cm. A schematic diagram of a Plexiglas test cell 

is shown in Figure 3.1. These cells are designed to accommodate only a small sample 

volume while still being large enough to avoid the effects of signal reflection off the cell 

walls due to spreading of the transmitted ultrasound beam as described in Kinsler et al. 

(1982). When these test cells are used, the suspension of the slurry is provided through 

manual agitation with a glass stirring rod. 

3.1.2 Ultrasonic and Accompanying Electronic Equipment: 

In regard to electronic equipment, there are two distinct experimental set-ups 

which are employed. The first setup is shown in Figure 3.2, and it is based on an 

experimental system employed by the Non-Destructive Evaluation Section of the Energy 

Division at the Battelle Pacific Northwest National Laboratory. This system consists of a 

desktop computer with a Matec TB-1000 digital synthesizer card capable of generating 

monochromatic tonebursts from 0.05 to 20 MHz in frequency. An example of a 1 MHz 

toneburst in both water and a 5% soda lime glass slurry is shown in Figure 3.3. A 

toneburst of a given frequency is sent to the transmitter piezoelectric transducer 

(Panametrics Videoscan Immersion Transducers Models V39 1, V302, V304, V308, 

V320, and V3 1 I), through the medium (either water or slurry), to the receiver transducer. 
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-3.1: Schematic diagram representing five different Plexiglas test cells employed 
in the solid-liquid and solid-gas-liquid experimentation. 
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The technical specifications associated with each transducer used in this study, including 

transducer bandwidth, are given in Table 3.1. A discussion of the determination of 

transducer bandwidth is given in Appendix E. The received signal can be either sent 

through the built in amplifier (capable of amplification from 0 to 70 dB) on the toneburst 

card (via a Pastemak Enterprises No. PE7008-1 50 Ohm attenuator box, if necessary) to 

a LeCroy Model 93 10A digital oscilloscope, or directly to the oscilloscope where the 

amplitude of the received toneburst is measured. The amplitude data are then entered 

into computer data files which are then loaded into a MATLABTM code which, after 

correcting for attenuator and amplifier settings, calculates the attenuation, a (in Np/cm), 

according to the formula: 

a=-+ , (3.1) 

where d is the distance (in cm) between the transducers, and YmiX and V,,, are the voltage 

amplitudes of the signals received in the mixture and pure water, respectively. It should 

be noted that the term “log” in equation (3.1) refers to the natural logarithm. Various 

MATLABTM codes written to manipulate the experimental data are shown in Appendix C. 

The second experimental setup is similar to the first, but in this case the Matec 

TB-1000 card and computer are replaced by a Pam-metrics Model 5052 PR 

Pulser/Receiver (cf. Figure 3.4). The pulser/receiver generates a negative spike pulse 

signal (instead of a toneburst) of 270 Volts which is sent to the transmitter transducer, 

propagates through the medium under investigation, and is received by the receiver 

transducer. The signal received then goes through the receiver which has an amplifier 
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Model # Serial # 

v391 

v391 

V302 211353 2.54 0.935 65.24 0.6 to 1.4 

V302 211354 2.54 0.950 65.26 0.6 to 1.4 

v304 217679 2.54 2.11 63.51 1.4 to 3.0 

v304 217680 2.54 2.08 63.46 1.4 to 3.0 

V308 219586 1.90 5.03 56.72 3.0 to 7.0 

V308 219594 1.90 4.88 56.41 

V320 222752 1.27 7.95 64.15 

V320 

v311 

v311 

226750 

Element Center Bandwidth 

Diameter Frequency (- 6 dB) 

(cm> w-w w> 

2.86 0.457 68.85 0.3 to 0.7 

228834 2.86 0.475 69.47 0.3 to 0.7 

222753 

221617 

221619 

1.27 

1.27 

1.27 

8.05 

9.90 

10.1 

55.90 

64.65 

56.72 

Operating 

Range 

w-w 

3.0 to 7.0 

5.0 to 11.0 

5.0 to 11.0 

6.0 to 12.0 

6.0 to 12.0 

Table 3.1: Specifications for the Panametrics, Inc. (Waltham, MA) Videoscan 
immersion transducers employed in this study. 
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capable of either 20 or 40 dB of gain and an attenuator capable of 0 to 58 dB of 

attenuation. The received pulse is then sent to the oscilloscope where the signal is 

averaged, and a Fast Fourier Transform (FFT) is performed on the averaged waveform. 

The average is usually calculated over 50 to 100 sweeps of the time domain duration of 

the signal of interest. The number of sweeps used in the averaging is dependent upon 

how quickly conditions in the sample are changing. If the particles or bubbles are large 

and tend to separate from the mixture quickly, fewer sweeps are used in the averaging of 

the waveform received. Through trial and error it has been determined that 50 sweeps 

allows for smoothing (averaging) of the received signal before the phases of a given 

slurry can separate. An example of a received pulse and its FFT magnitude spectrum 

(used by Panametrics a calibration for a 1 .O MHz transducer) is shown in Figure 3.5. The 

magnitude spectrum generated by the FFT is then saved on a floppy disk as an ASCII 

data file and loaded into a h&4TLABTM code where the attenuation is calculated in a 

manner identical to that described previously in this section. 

The advantage to the Pulse/FFT technique over that of the Toneburst technique is 

that the entire operating frequency range of a given pair of transducers can be covered in 

a single measurement rather than requiring measurements at incremental frequencies over 

the transducer operating range, as is the case of the toneburst measurements. A pulse is 

comprised of the sum of many sinusoidal waves of various frequencies (Ramirez 1985), 

and thus, the FFT of a received pulse of a given amplitude will exhibit magnitude values 

over the entire operational frequency range of a given pair of transducers. The Pulse/FFT 
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technique greatly increases the speed and efficiency of attenuation data acquisition. A 

comparison between results of the two data acquisition techniques is made in Section 3.5 

3.1.3 Photomicrogrphic Video Imaging System: 

In the present study bubble sizes in solid-gas-liquid slurries are estimated through 

the use of a digital photomicrographic video imaging system. This imaging system 

consists of a Company 7 “Questar” QM-100 long distance microscope (identical to that 

used by Bums et al. (1996) and Shin et al. (1997)) providing magnification of 

approximately 152 times at a working distance of 17.8 cm (7”). The microscope is 

coupled to a Cohu Model 48 10 2/3” format monochrome CCD video camera. The CCD 

video camera is synchronized to a strobe light via a Global Specialty Corporation 4001 

Pulse Generator and interfaced in parallel with an Apple Power Macintosh G3 desktop 

computer equipped with a Scion VG-5 PC1 frame-grabber board and an Apple ColorSync 

20 “high resolution” monitor. The strobe light provides backlighting so that the bubbles 

appear as dark images on a light background, and the strobe is synchronized with the 

camera so that the moving bubbles appear as though “frozen” in space. The imaging 

system setup is shown schematically in Figure 3.6. 

Images obtained by the CCD video camera are sent to the computer where 

image analysis is performed. Initially, the image analysis was performed using the Scion 

Image software package provided with the frame-grabber board. However, that software 

package has been replaced by a more advanced, privately distributed, software package 

called Image SXM, version 1.61-7 (Barrett 1998). 
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The most difficult consideration involved with the imaging system is that ofthe 

proper lighting to be used. As was discussed by Bongiovanni et al. (1997), the error in 

photographing spherical particles can be considerable depending upon the relative 

positions of the backlighting, the object, and the objective lens. However, bright field 

backlighting is the most desirable lighting technique (as opposed to, say, dark field 

lighting) in the consideration of possible three phase particle and bubble size 

measurements. In dark field illumination, it is difficult to distinguish between solid 

particles and bubbles. Also, an illumination configuration such as that employed by 

Kirou et al. (1988) is not feasible as the test cell size is too small to accommodate the 

fiber optic apparatus; and, according to Bongiovanni et al. (1997), the relative size and 

close proximity of the light source to the focal distance of the particles or bubbles will 

introduce large errors in the size measurements. Therefore, since the experimental 

measurements and the optical apparati involved are similar, bubble measurements are 

made by the method employed by Burns et al. (1997) and Shin et al. (1997), and a 

calibration is performed using particles of known sizes to determine how much, if any, 

error is present in the size measurements by this method. Back lighting is provided by a 

strobotach placed about 61 cm (24”) behind the test cell. The microscope is placed at a 

working distance of approximately 17.8 cm (7”) from the center of the test cell. As the 

strobotach has a lighting element that is only 4” in diameter, the error in the size 

measurements should be relatively small. The 17.8 cm working distance is chosen 

because it is a working distance which provides for reasonable magnification of the 
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smallest calibration particles while still allowing the largest particles to be photographed 

at the same working distance. 

The calibration is begun by setting the scaling factor for the conversion from pixel 

count to size measurement. This task is performed by photographing a reticle marked 

with circles of various sizes. Diameter measurement is performed on the smallest circle 

on the reticle, which is 0.005” (127 f 2 pm) in diameter. This information is then used 

to make the pixel to length conversion. This calibration is performed before each series 

of measurements or whenever the focus of the microscope is adjusted. Further calibration 

is performed to determine the overall measurement error by photographing NIST 

traceable polystyrene spheres (Duke Scientific Corp., Palo Alto, CA) of certified diameter 

at lighting conditions identical to those to be used in actual bubble measurements. Four 

different sphere diameters are used in the calibration. The sizes (diameters) are, 

respectively, 25.02 Z!I 0.12pm, 50.4 + l.Opm , 103 + 1.8um, and 158 + 3.2 pm. A series 

of photographs is obtained for each particle diameter and an average of 50 diameter 

measurements are made from these photographs at each particle size. The diameter 

measurements for each particle size are averaged, and the average particle diameter is 

plotted versus the known (certified) particle diameter. A best fit least squares line is then 

fitted to these data using the “polyfit” routine in MATLABTM. The least squares fit yields 

the following relationship between the measured and true particle diameters: 

d MeaS = 1.25 d,, - 10.4 , (3.2) 

where dmeas and dtme are the measured and true (known) particle diameters, 

respectively. The calibration curve is shown in Figure B.3 in Appendix B. 
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3.2 Experimental Procedure--Solid-Liquid Slurries: 

3.2.1 Dilute Soda-Lime Glass Slurries: 

The initial solid-liquid attenuation experiments are performed in slurries of soda- 

lime glass beads in distilled water at various solids volume fraction. The soda-lime glass 

beads have been purchased from Cataphote, Inc. and have a density of 2.54 g/cm3. The 

physical properties of these particles are shown in Table 3.2. Particle size distribution 

measurements have been performed on these beads at the Battelle Pacific Northwest 

National Laboratory (PNNL), and it has been determined that the batch of beads used in 

these experiments has a particle mean diameter of 32 pm and standard deviation of 7.6 

pm (Greenwood, private communication 1998). Solids volume fractions of the various 

slurries is confirmed by making mass measurements of known volumes of suspended 

slurry upon completion of experimental runs. The solids volume fraction is determined 

from the following equation: 

4s = 
&my - /‘II20 

holid - pH-20 ’ 
(3.3) 

where @s is the solids volume fraction in the slurry, and pslUrry, psolid, and ~~20 are, 

respectively, the slurry, solid, and water densities. 

Two pairs of transducers are put in place for each experimental series performed 

in the 1.6 L PVC mixing vessel. Before performing each experiment, the separation 

distance between each pair of transducers is measured and recorded, and the vessel is then 

filled with distilled water. The voltage amplitude of monochromatic tonebursts over 

incremental frequencies is measured over the operational range of each pair of tranducers 
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Polystyrene 

Density (gkm3) 1.055 

Thermal Conductivity 1.15 x 10” 

p&--/T 
Thermal Expansion 2.04 x lOA 

1 Coefficient (l/K) 1 

Attenuation Coefficient 1.0 x lo-l5 

per-f (s2/cm) 

Sound Speed (cm/s) 2.3 x 10’ 

Shear Viscosity (g/cms2) _ 

Shear Rigidity (g/cms2) 1.27 x 10” 

Soda-lime 

Glass 

Water 

2.54 1.0 

9.6 x 10” 5.87 x 1O-3 

0.836 

3.2 x 1O-6 

4.19 

2.04 x lOa 

1.0 x lo-l5 2.5 x lo-l6 

5.2 x lo5 1.48 x 10’ 

1.01 x 1o‘2 - 

2.8 x 10” - - 

c _ . 
Table 3.2: Values of physical properties used m fI leoretical ca ulations. The 

values for polystyrene are from Epstein and Car-hart (1953). The 
properties of soda-lime glass are from Kinsler et al. (1982) and 
Bolz (1973). The properties of glycerin are from Perry ‘s Chemical 
Engineer’s Handbook (1984) and the CRC Handbook of Chemistry 
and Physics (1984). 

Glycerin/ 

Water 

Mixture 

1.08 

4.5 x 1o-3 

4.19 

3.22 x lOA 

- 

1.6 x 10’ 

3.2 x 1O-2 
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in the toneburst technique, or an FFT is performed on the received waveform of a 

negative spike pulse input signal for each pair of transducers in the PulseiFFT technique. 

In each case it is important to record the pertinent operating parameters of each particular 

pulse generating apparatus. In the case of the toneburst technique, where the Matec TB- 

1000 digital synthesizer is used, the recorded parameters consist of the frequency, the 

amplifier gain, and attenuator box settings (if necessary). In the case of the Pulse/FFT 

technique the recorded parameters are the pulse repetition rate, the pulse energy, the 

receiver attenuation, the high pass filter setting, the damping, and the receiver gain. The 

digital oscilloscope is set to parameters which are appropriate for the given experimental 

run, and these parameters are either recorded manually or shown in printed “hardcopies” 

of oscilloscope waveform traces. 

After voltages are measured by either technique for the distilled water, the water 

is drained from the vessel and replaced with the slurry to be interrogated. The slurry is 

suspended via agitation by a I,ightnm’ L&master IPTM Model TS 25 10 portable mixer 

fitted with a 5.08 cm diameter marine propeller type impeller. It is important to make 

certain that the impeller and shaft are positioned off center in the mixing vessel so that 

they are not in the travel path of the acoustic signal. The agitation speed is varied as the 

agitation speed employed in each case is the highest speed achievable such that the solids 

are suspended, but there is no vortex “tube” which extends into the acoustic travel path. 

These conditions are usually satisfied by agitation speeds ranging from 300 to 600 rpm. 

Voltage measurements are then made for the slurries in the same fashion as those made 

for the distilled water. 
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The voltage data for both the distilled water and the shn-ries are then entered into 

ASCII data files which are loaded into MATLABTM codes to calculate the attenuation by 

using equation (3.1) after correcting for the receiver gain and receiver attenuation. 

3.2.2 Dilute Polystyrene Slurries: 

Attenuation measurements are also made in dilute suspensions of polystyrene 

beads in water. The polystyrene beads are manufactured by Duke Scientific Corp., Palo 

Alto, CA and are composed of polystyrene with 2 % divinylbenzene (considered pure 

polystyrene in this study). The physical properties of these particles are also given in 

Table 3.2. They are purchased as nominally “monodispersed” 158 pm diameter 

polystyrene spheres, but the calibration information provided by the manufacturer shows 

that spheres actually have a rather narrow size distribution with mean diameter of 158 +_ 5 

urn and standard deviation of 3.6 pm. Due to the very narrow size distribution, the 

spheres are somewhat expensive, and only a small quantity has been purchased which 

come from the manufacturer in a 10 % (by wt.) suspension in water. Since the particles 

have a density of 1.05 g/cm3, weight percent is approximately equal to volume percent. 

The purchased quantity is diluted to a 5 % (by volume) suspension, and there is sufficient 

volume of slurry to perform attenuation measurements in the 5.08 cm test cell. 

Attenuation measurements are performed in this slurry using both the toneburst 

and Pulse/FFT techniques described previously in Section 3.1.2. 
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3.2.3 Concentrated Soda-Lime Glass Slurries: 

Attenuation measurements are also performed in relatively concentrated slurries 

of soda-lime glass beads. These beads are soda-lime glass beads manufactured by 

Potter’s Industries, Inc. (Brownwood, TX) with a specified density of 2.54 g/cm3. The 

physical properties of these particles are shown in Table 3.2. These particles have also 

been subjected to particle size measurements at the Battelle Pacific Northwest National 

Laboratory, and it has been determined that the particles have a mean diameter of 125 pm 

with standard deviation of 19 pm. 

Because these particles are rather large, even concentrated slurries are difficult to 

suspend in a pure water continuous phase. Therefore, the suspending liquid which is 

employed is a mixture of approximately 29 % (by wt.) of glycerin (approximately 99 % 

reagent grade, Sigma Chemical Company) in distilled water. The addition of the glycerin 

increases the liquid phase density to approximately 1.08 g/cm3, and the liquid phase 

viscosity by approximately a factor of three. The liquid phase viscosities of these 

solutions range from 0.0259 g/cm+ to 0.0308 g/cm-s. Thus, the solid particles settle 

much more slowly, and attenuation measurements can be made. It should be noted that 

even with the addition of glycerin, the particles still settle sufficiently quickly that the 

suspension of large volumes of slurry is difficult. Therefore, only small volumes of the 

concentrated slurries are prepared, and all measurements are performed in the various 

“box” geometry test cells. 

Slurries are prepared at 5 %, 10 %, 15 %, 20 %, 30 %, 40 %, 45 %, and 50 % 

solids by volume. These slurries are then subjected to attenuation measurements in the 
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various test cells by both the toneburst and Pulse/FFT techniques described previously. It 

should also be noted here that the “pure liquid” reference voltages in these experiments 

are not made in pure distilled water, but rather in the individual glycerin/water mixtures 

in which the solids of each slurry are suspended. Each time a slurry is prepared, a portion 

of the suspending liquid mixture is put aside and saved to be used as the “reference 

liquid” for the attenuation measurements in that slurry. The average physical properties 

for the glycerin/water mixtures are given in Table 3.2. 

3.3 Experimental Procedure-Bubble Generation: 

Several different methods have been employed to generate bubbles for attenuation 

measurements in bubbly liquids and solid-gas-liquid systems. Each method has its 

particular advantages and disadvantages with respect to reproducible bubble generation 

rate, bubble size distribution, compatibility with the ultrasound measurement equipment 

and slurry solids, etc. 

The first bubble generation method which has been employed is an electrolysis 

method based on that used by Kol’tsova et al. (1979). Electrolysis has the advantage of 

producing relatively small bubbles (< 100 pm diameter), but it can be difficult to control 

when operated in a continuous mode as the electrolysis causes the electrical properties of 

the water to change with time. These changes cause variations with time in the current 

provided to the electrolyzer which makes reproducible bubble production difficult. Also, 

continuous operation of the electrolyzer over an extended period of time causes 

significant increases in the temperature of the medium under interrogation. As the 
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density of most media changes with temperature, and the attenuation of acoustic energy 

in materials is strongly dependent upon the material density, these temperature changes 

are most undesirable. The possibility of using the electrolytic bubble generation method 

in a non-continuous fashion has also been explored and will be discussed in more detail 

later in this section. Another significant disadvantage to using the electrolytic generation 

technique is that the ultrasonic transducers are grounded. Because of this grounding, the 

safety controls in the DC power supply (Sigma-Aldrich Model PS 4010-l) cause it to 

shut off due to a “ground leak error” fault whenever the transducers are in direct contact 

with the sample under investigation. 

The second bubble generation technique investigated is an electrostatic spraying 

technique based on that used by Tsouris et al. (1995). This technique produces bubbles 

which are approximately the same size as those produced by electrolysis, however, this 

technique has also proven to be difficult to employ reproducibly. Electrostatic spraying 

of air into water requires the use of de-ionized water. As the process is operated, ions 

begin to accumulate in the water, and the technique becomes less effective with time. 

This situation is further exacerbated by the addition of solids, such as soda-lime glass 

beads, which have a fairly high content of ions which will migrate from the solids into the 

liquid phase. The aforementioned factors, coupled with the solids also tending to clog the 

capillary spray nozzle make the electrostatic spraying technique difficult to control, and 

therefore, undesirable as a bubble generation technique. 

The third bubble generation technique which has been explored is the use of air 

pumped through an aquarium aerator stone. The particular aerator used is manufactured 
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by Coralife (Energy Savers Unlimited, Inc., Harbor City, CA) and is made from 

limewood. Limewood has the unique property that it contains a number of small straight 

pores which allow for the production of relatively small bubbles. The aerator is operated 

by interfacing it with a Cole-Parmer Model 74900 syringe pump and pumping air at 

various metered flow rates. This method of bubble generation is quite successful in that 

bubbles are generated fairly consistently over long periods of time even with solids 

present. This technique is the one employed in the initial “proof of principle” solid-gas- 

liquid attenuation measurement experiments. A notable characteristic of this method is 

that the bubbles produced are of fairly large diameter and wide size distribution relative 

to those produced by the other methods, such as electrolysis. The bubbles produced from 

the limewood aerator, when operated in water at an air flow rate of 150 ml/hr, are 

photographed and measured using the photomicrographic imaging system described in 

Section 3.1.3, and the bubble population is determined to have a mean diameter of 14 1 

pm with standard deviation of 67 urn. The bubble volume fraction is estimated to be . 

approximately 0.02. These bubble size characteristics are somewhat undesirable as 

bubbles of these sizes have rather low resonance frequencies; it is, therefore, difficult to 

examine the effects of bubble resonance with bubbles of these sizes. 

As was previously mentioned, the possibility of producing bubbles by electrolysis 

in a non-continuous manner has been explored. It has been determined, by trial and error, 

that if bubbles are generated electrolytically only for a time period which is long enough 

to establish bubble flow, mix the vessel contents, and make an acoustic measurement, 

fairly reproducible electrolyzer performance can be maintained. The other drawback to 
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the electrolytic technique is the recurrence of “ground leak error” faults when the 

transducers are in place which would cause the DC power supply to shut off. This 

problem is rectified by covering the wear plates of the transducers with ParafilmTM, a 

paraffin laboratory covering wrap, and coupling the ParafilmTM to the transducers with 

ultrasound gel. Also, the transducers have to be disconnected from the pulse generator 

until bubble flow is established. Incorporation of these improvements allows for the use 

of electrolysis as a method of bubble generation in the attenuation experiments. 

The electrolytic set up in the test cells is rather simple. The cathode (negatively charged 

electrode) consists of an approximately 30 cm length of 1.3 mm diameter copper 

electrical wire with the insulation shipped away ti-om approximately %” of the wire end 

and the individual wire strands separated, run vertically through an l/8” NPT to 

Swagelok fitting in the bottom of the cell so that it sticks upright perpendicular to the flat 

bottom of the cell. Care is taken to avoid the cathode wire protruding into the acoustic 

path between transducers. The anode (positively charged electrode) is an approximately 

4 cm length of l/8 “ diameter stainless steel rod positioned against the test cell wall with 

approximately one centimeter of its length immersed below the liquid surface. When the 

DC power supply is turned on, bubbles are generated at the cathode and rise upward 

toward the anode. Bubbles are generated in all experiments at 40 V; 4 to 8 mA; and ~1 

W. The bubbles generated in water at these conditions are photographed and measured 

using the photomicrographic imaging system described in Section 3.1.3. These bubbles 

are found to have a mean diameter of 51 pm with standard deviation of 26 pm. The 

bubble volume fraction is estimated to be approximately 0.002. 
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3.4 Experimental Procedure-Solid-Gas-Liquid Slurries: 

The attenuation measurement experiments in solid-gas-liquid slurries are very 

similar in nature and procedure to those performed in solid-liquid slurries. In fact, the 

experimental procedure for the solid-gas-liquid systems actually includes a step where the 

attenuation is measured in a solid-liquid slurry without the presence of gas bubbles. 

Solid-liquid slurries are prepared at 5 % and 10 % solids (by volume) using the same 

soda-lime glass beads which are described in Section 3.2.1. Attenuation measurements 

are performed in these slurries using the Pulse/FFT technique described previously in 

Section 3.1.2. Once attenuation measurements are made in the solid-liquid slurry of 

interest in the particular experiment, bubbles are generated using either electrolysis to 

generate relatively small, narrowly distributed bubbles (approximately 25 to 76 urn in 

diameter) or air pumped at 150 ml&n- through the limewood aerator stone to generate 

larger, more widely distributed bubbles (approximately 74 to 210 pm in diameter). In the 

case where the bubbles are generated electrolytically, the DC power supply is operated at 

40 V; 4 to 8 mA; and < 1 W. When the LCD display on the power supply shows that it is 

operating at the specified conditions, the (now solid-gas-liquid) slurry is mixed 

thoroughly with a glass or plastic stirring rod and a measurement is made. The data are 

recorded as per the procedure described in Section 3.1.2, and “hardcopies” of the 

oscilloscope traces and FFT spectra are entered into the laboratory notebooks. All 

computer files are stored both on the hard drive of the data acquisition computer 

(Gateway 2000 P5-66) and on 3.5” floppy diskette. Also in these experiments, bubbles 

are generated by both methods in the water used to make the reference measurements 
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after the reference measyrements are made. Pulse/FFT measurements are made in these 

bubbly liquids, and the data are recorded in order to calculate bubbly liquid attenuations 

for later comparison with solid-gas-liquid attenuations in an attempt to obtain information 

about any effects the solids may have on the bubble size. 

3.5 Quality of Experimental Results: 

3.5.1 Comparison of Attenuation Measurement Techniques: 

Upon development of the Pulse/FFT technique for obtaining attenuation data in 

the various slurries, one of the most important issues to be addressed is how well the 

attenuation data obtained by this technique compare with those obtained by the Toneburst 

measurement technique. A comparison of attenuation data obtained by both techniques 

in a 5 % (by vol.) slurry of soda-lime glass beads in water is shown in Figure 3.7. From 

this figure is clear that the two methods of obtaining data are equivalent under most 

conditions. It is found, however, that in dilute slurries the Pulse/FFT technique yields 

better results at lower frequencies than the toneburst technique. The results are better for 

the Pulse/PFT technique because the toneburst measurements are made by manually 

moving the horizontal oscilloscope cursors to correspond with the wave peaks and 

troughs in the received toneburst signal. At lower frequencies, the attenuation is small, 

and the error in the measurements becomes large relative to the magnitude of the 

measurements, themselves (on the order of 20 % relative error). In the case of the 

Pulse/FFT technique, the amplitude as a function of frequency is calculated from the 

received pulse waveform by the oscilloscope as part of the FFT algorithm Since 
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Figure 3.7: Comparison of attenuation spectra results obtained in a 5 % soda-lime glass 
slurry by both the Toneburst and the Pulse/FFT Techniques. - El301. 
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Pulse/FFT method is an automated measurement technique, the measurement error at 

lower frequencies is smaller than that observed in the manually performed toneburst 

measurements. 

3.5.2 Reproducibility of Experimental Results: 

In order to examine the reproducibility of experimental results, complete repeat 

experiments have been performed at various times throughout the course of this study. 

These duplicate experiments are performed in addition to collecting data by more than 

one technique (as discussed in the previous section) in order to establish an overall sense 

of the reproducibility of the experimental results. As the acoustic attenuation behavior of 

these various slurries is quite complicated, and the data for these specific systems (e.g. 

particle type and size, and gas phase concentration) are unique, it is difficult to perform a 

rigorous error analysis to determine the absolute accuracy of the results. It is, however, 

possible to investigate the quality of the data with regard to the reproducibility of results 

and their agreement with theoretical predictions. 

Experiments are repeated (total of three experiments) in the attenuation 

measurements made in the soda-lime glass slurries at 5 % solids by volume using the 

Toneburst technique. Also, repeated experiments are performed in the concentrated 

slurry experiments with the Potter’s beads slurries in glycerin/water. Duplicate 

experiments are performed at 50 % (two duplicates), 30 %, and 10 % solids by volume. 

Figure 3.8 shows the average (solid line) attenuation versus frequency curve, with 

error bars, for three experiments using slurries of 5 % (by volume) soda-lime glass beads 
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in water. The error in the measurements is taken to be the mean difference between the 

experimentally determined attenuation value and the mean attenuation value at each 

frequency. It can be seen fi-om Figure 3.8 that the data, except at the lowest frequencies 

where the attenuations are rather small, fall within 5 % (relative error) of the average 

value. Even at the lowest frequencies, the measurement error still permits results which 

are within 20 % of the mean value of the attenuation. These results demonstrate that the 

experimental measurements in these slurries are rather reproducible. 

Similarly, Figures 3.9,3.10 and 3.11 show the average attenuation versus 

frequency curves, with error bars, for 10 %, 30 %, and 50 % (by volume) slurries, 

respectively, of Potter’s Beads in a mixture of glycerin and water. In Figure 3.9, which 

shows the error in the 10 % Potter’s beads slurry measurements, the error in the 

attenuation measurements is relatively small up to, and including, that at 3.0 MHz. At 

3.0 MHz the relative error is 1.7 %, while at 3.5 MHz, the error jumps to 18 %. The error 

in the attenuation measurements at 3.5 MHz is more than 10 times that at 3.0 MHz. The 

error continues to increase with increasing frequency up to 32 % at 5.0 MHz. The error is 

considerably larger at frequencies above 3.0 MHz because these are the frequencies at 

which the operating ranges of the various transducers used in the measurements overlap. 

There often tend to be slight differences in measurements between the individual 

transducer pairs at overlapping frequencies, even though the results should ideally match. 

These differences are usually small enough so as not to present a problem from a 

reproducibility standpoint. However, because of the large particle size and density 

difference between the phases, the Potter’s beads slurries are particularly difficult to 
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Figure 3.8: Mean attenuation versus frequency curve with error bars representing the 
average difference between individual attenuation values and the mean 
value. These data are for a 5 % (by volume) soda-lime glass slurry in 
water. - El 101. 
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Figure 3.9: Mea attenuation versus frequency curve with error bars representing the 
average difference between individual attenuation values and the mean 
value. These data are for a 10 % (by volume) Potter’s beads slurry in 
a mixture of glycerin/water. - ES 182. 
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suspend uniformly. Therefore, any discrepancies between measurements will be 

amplified in the data for these slurries because of differences in the uniformity of the 

suspension. 

A similar situation is seen for the 30 % Potter’s beads slurry data shown in Figure 

3.10. Here the error in the attenuation measurements becomes relatively large at 2.0 

MHz, and at 3.0 MHz and 3.5 MHz. These frequencies also overlap in the operating 

ranges of the transducers used in these experiments. Therefore, as seen previously in 

Figure 3.9, there is an increased error at these frequencies because of differences in the 

results obtained by the different transducers. 

Figure 3.11 shows the error in the attenuation measurements in a 50 % (by 

volume) Potter’s beads slurry. The error in the measurements in the 50 % slurry appears 

to be more uniform relative to that in the 10 % and 30 % slurries in that there are no data 

points where the error band is exceptionally large. It is not clear why the error is more 

uniform for this slurry. One possible explanation could be that the data for the 50 % 

Potter’s beads slurry are obtained in the test cell with the shortest acoustic path length 

(2.54 cm). It is possible that the slurry volume between the transducers in this test cell is 

small enough that there is more consistency in the slurry mixing conditions and solids 

concentration which are interrogated by the different transducer pairs. 

In general it can be said that the experimental error is larger in the Potter’s Beads 

slurries than in the soda-lime glass slurries. The largest relative error in the soda-lime 

glass beads slurries data is 19 % at 0.3 MHz where the attenuation is extremely small; 

while the 30 % Potter’s Beads slurry measurements display an error as high as 32 % at 
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Figure 3.10: Mean attenuation versus frequency curve with error bars representing the 

average difference between individual attenuation values and the mean 
value. These data are for a 30 % (by volume) Potter’s beads siuny in 
a mixture of glycerin/water. - E6 192. 
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Figure 3.11: Mean attenuation versus frequency curve with error bars representing the 
average difference between individual attenuation values and the mean 
value. These data are for a 50 % (by volume) Potter’s beads slurry in 
a mixture of glycerin/water. - E6112. 
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5.0 MHz. This larger error is, again, most likely due to variations in the mixing 

conditions in the Potter’s Beads slurries caused by the combination of relatively large 

particle size and the density difference between the solid and liquid phases. 
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Chapter 4: Theory and Experiments for Dilute 
Solid-Liquid Suspensions 

4.1 Theory for the Attenuation of Sound in Dilute Solid-Liquid 
Suspensions: 

The determination of the acoustic response of a slurry given a priori details of its 

microstructure is referred to as the forward problem. When the total volume fraction of 

. 

the solids is small, the problem is relatively simple since one only needs to understand the 

interactions between a single particle and an incident sound wave. This phenomenon has 

been studied by a number of investigators in the past with notable contributions from 

Epstein and Carhart (1953) and Allegra and Hawley (1972), who considered suspensions 

of particles as well as drops. Allegra and Hawley (1972) also reported experimental 

results verifying the theory for relatively small particles for which the acoustic 

wavelength is large compared with the particle radius. The theory developed by these 

investigators is quite general and accounts for attenuation by thermal, viscous, and 

scattering effects. This theory is briefly described in this chapter, and its predictions are 

compared with experimental data for dilute systems of polystyrene particles in water and 

soda-lime glass beads in water. A more complete description of the governing equations 

is given in Chapter 6, where a theory is developed for concentrated suspensions. 

The wave equations for both the interior and exterior of the solid particles were 

initially derived by Epstein and Carhart (1953). These investigators first linearized the 

conservation equations for mass, momentum, and energy. The pressure and internal 
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energy are eliminated by introducing the linearized equations of state to yield equations 

in terms of density, velocity, and temperature. Next, the time dependence of all quantities 

is expressed by the factor exp(-iot), which is henceforth suppressed. The velocity vector, 

v, can always be represented in terms of a scalar potential, a), and a vector potential, A, as 

V = -V@+VxA (4.1) 

with V l A = 0. With this form of v it is possible to eliminate the temperature and 

density from the governing equations to yield a fourth-order partial differential equation 

for CD and a second-order equation in A. The former can be split in two second-order 

wave equations upon substitution of @ = oC + (#IT (where $C and 4~ represent the scalar 

potentials of the compressional and thermal waves, respectively) to finally yield three 

wave equations: 

(V’ +k,2)& = 0, (4.2) 

(V’ +k+ = 0, (4.3) 

(V2 .k,2)A = 0, (4.4) 

The wavenumbers in the above equations are given by 

/kz =$[ l-i(e+f)+((l-i(e+f))2 +4f(i+ye))1’2 
I 

, (4-5) 

1-i(e+f) - ((l-i(e+jf))2 +4f(i+~e))l’~ , 1 (4.6) 



52 

ks = (l+i)(op/2p) l/2 , 

with 

e-(4p/3+-K)til/(pc2); f sDlil/C2. 

(4.7) 

Here, c is the phase speed in the pure liquid; p is the density; K and p are, respectively, 

the compressional and dynamic viscosities; y = CdCv is the ratio of specific heats at 

constant pressure and volume; z is the thermal conductivity; and o = zlpCp is the thermal 

diffusivity. 

Inside the particles similar equations hold with the dynamic viscosity replaced by 

p/(- iw) and the wave speed by ((;i + 2p/3)/$i2, - where p and 2 are the Lame 

constants, and the compressional viscosity is left out. Henceforth, a tilde refers to the 

inside of the particles. 

At small values of e andf(such as in water), the above expressions for kc and kT 

simplify to 

and kT = (1+ i)(t3/20)1’2 . (4.10) 

Equation (4.2) and its counterpart inside the particles describe the sound wave 

propagation through the suspension. Note that the wavenumber has an imaginary part; 

sound waves in pure fluid are attenuated by viscous and thermal energy dissipation 

(Lighthill 1956); the term inside the square brackets in equation (4.9) is commonly 
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referred to as the ‘diffusivity of sound’. The total attenuation coefficient in both the 

liquid and in the solid particle will henceforth be treated as additional physical properties. 

The other two wave equations describe waves that arise from thermal conduction and 

finite viscosity: we note that the modulus, ky in equation (4. lo), is inversely proportional 

to the thermal penetration depth, JO/W , and that of k, to the viscous penetration depth, 

J,,%/pW . The thermal (4~) and shear (A) waves have generally very high attenuation 

and are unimportant in acoustic applications. 

Applying the boundary conditions of continuity of temperature, heat flux, 

velocity, and traction at the surface of the particles, and solving the resulting boundary 

problem numerically, it is possible to, in principle, determine the phase speed and 

attenuation at arbitrary volume fraction using the above formulation. 

The potential, bC, outside a particle at x, can be expressed as 

(#c)(x)= exp(ik, l x) + exp(ik, l x1) fin (2n + l)A,h, (k,r)P, (p), (4.11) 

n=O 

where r = Ix - x,1, u = case, 8 being the angle between x - x, and k,, hn is the spherical 

Bessel function of the third kind (or Hankel function) corresponding to an outgoing 

scattered wave, and Pn is the Legendre polynomial of degree of n. 

Inside the particle centered at x, we have 

(&)(xjxl)=exp(ik, l ~1) gi”(2n + 1)znjn(k”,r)P,(P), 
n=O 

(4.12) 
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where& is the is the spherical Bessel function of the first kind. Similar expressions are 

written for 4~ and A. This results in expressions with a set of six unknowns for each 

mode n. Application of the boundary conditions of continuity of velocity, traction, 

temperature, and heat flux yield six equations in six unknowns for each n. There were 

some typographical errors in the equations given by Epstein and Carhart (1953) and 

Allegra and Hawley (1972); the correct equations are given in Appendix A. Although it 

is possible to solve for the unknowns analytically in certain limiting cases, it is best to 

solve them numerically since we are interested in covering a wide frequency range for 

later inverse calculations. 

Once the coefficients are determined, the attenuation can be calculated using the 

result for the attenuation per unit length given by Allegra and Hawley (1972) as 

34 O” a=-- c (2n + l)%eA, . 
2z2a n=() 

(4.13) 

The above analysis can be extended in a straightforward manner to account for the 

particle size distribution when the total volume fraction of the particles is small. One 

may write the attenuation by the particles of radius between a and a+& as an attenuation 

density &(f , a) (wherefis the frequency of the wave, f = 0/(2x)) times the volume 

fraction of those particles, $(a)&. Here $(a) is the particle volume fraction distribution. 

At low volume fractions these contributions can be “summed” over all particle sizes to 

give the total attenuation a&): 
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(4.14) 

It should be noted that it is customary to express the particle size distribution in terms of 

its number density distribution P(a). The volume fraction distribution is related to p(a) 

by qfa) = (4im 3/3)p(a), 

-4.2 Attenuation Measurements in Dilute Solid-Liquid Systems: 

4.2.1 Attenuation in Soda-Lime Glass Bead Slurries: 

Attenuation data plotted as a ftmction of frequency for soda-lime glass beads at 5 

% and 10 % by volume are shown in Figure 4.1. These data are collected in the 1.6 L 

PVC vessel by the Toneburst measurement technique. These experimental results are 

plotted along with results of the forward problem calculation based on the theory of 

Allegra and Hawley (1972) for log-normal distribution of particle sizes. The fonvard 

problem calculation used a particle radius of 14 pm with a standard deviation of 7 pm. 

The actual solids radii range from 0.5 pm to 18 pm, with mean radius at 9 pm. It is clear 

from this figure that the agreement between theory and experiment is excellent. 

It is interesting to note in this figure the pronounced change in the slope of the 

attenuation curve. This change in slope occurs where the dominant attenuation regime 

changes from the inertial regime (Kytomaa 1995) to the geometric scattering regime. 

The theory predicts that the slope of the attenuation curve should be % ,before the 

transition and four afterwards. That is, the attenuation should scale asf”’ before the 
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Figure 4.1: Comparison between experimental results and forward problem theory 
predictions for the attenuation versus frequency curves for soda-lime 
glass shies at 5 % (lower curve) and 10 % solids by volume. The 
experimental solids size distribution has a mean radius of 14.9 pm with 
standard deviation of 3.56 pm. The forward theory predictions are based on 
a log-normal distribution with a mean radius of 14 pm and standard 
deviation of 7 pm. - El 101. 
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transition andf4 afterwards. However, if one examines the experimental data it can be 

seen that the data in the inertial regime do scale asf*‘* , but the data in the scattering 

regime scale with frequency more likef3 . At first it was thought that this difference 

occurred because the soda-lime glass particles are polydispersed, but this behavior is seen 

in theoretical calculations even for monodispersed particles. This behavior is actually 

due to contributions from more than one mode of resonance, which shall be discussed in 

more detail in the next section. 

4.2.2 Attenuation in Polystyrene Bead Slurries: 

Figure 4.2 shows the attenuation as a function of frequency for 79 pm radius 

“monodispersed” polystyrene beads. These data are obtained in the 2.54 cm nominal 

path length Plexiglas test cell using both the Toneburst and the PulseLFFT measurement 

techniques. These data are also compared with several different results of the forward 

problem theory using different input particle size distributions. Good agreement is seen 

between experiments and the theory except near the resonance frequencies where small 

differences appear. The differences were initially thought to possibly be due to finite 

volume fraction effects, but when the attenuation is calculated using an effective medium 

approach, shown by a dash-dot line in Figure 4.2, the attenuation actually shifts in a 

direction which increases the differences . Therefore, the differences probably occur 

because the particles are not exactly monodispersed. The theory for a monodispersed 

dispersion, shown by the solid line in Figure 4.2, also shows a difference from 

experimental data. However, when the theory calculations are performed using a particle 
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Figure 4.2: Comparison of forward theory with experimental data for the attenuation as 
a function of frequency. These data are for polystyrene particles of radius a 
= 79 pm, at 5 % by volume. 0, experimental data; -, theory for 
monodispersed particles; -.-.- , theory for monodispersed particles with 
effective medium correction for finite volume fraction effertc. - - - 

. A~“.“, 

theoretical result with a particle size distribution with a mean radizs of 79 
pm and standard deviation of 2.5 pm (this is the particle size range specified 
by the particle manufacturer). - E2363. 



59 

size distribution with a mean diameter of 154 pm with a standard deviation of 5 pm, 

(which lies within the manufacturer’s specifications) the result for the attenuation, which 

is shown as a dashed line in Figure 4.2, shows excellent agreement with the experimental 

data. Thus, it can be concluded that the small observed differences are due to the 

polydispersity of the dispersion. 

It is important to note the several peaks and troughs in the plot at frequencies 

above approximately 3 MHz. These peaks and troughs are caused by the various modes 

of resonance which the particles undergo. Each peak corresponds to-dominance by a 

different mode of resonance. 

These transitions to dominance by the different modes of resonance are also 

responsible for the slope in the scattering regime never truly achieving anf4 dependence. 

The Lengendre polynomials in the equations for the potential describe the contributions 

to the attenuation from the various modes of oscillation which the particles can undergo. 

The n = 0 mode corresponds to radial (volume) oscillations. The n = 1 mode corresponds 

to translational oscillations. The n = 2 mode corresponds to ellipsoidal P,-shape 

oscillations, and so on. Figure 4.3 shows the contributions to the total attenuation as 

calculated for the polystyrene particles used in the experiments from the forward problem 

theory. The density of polystyrene particles is essentially the same as that of water, and 

so the translational oscillations of the particles are small. Therefore, the viscous 

attenuation is small, and the low frequency behavior is governed by the thermal 

attenuation of the n = 0 mode (volume oscillations). At higher frequencies the n = 0 

mode increases first asf4 due to scattering losses, but the contribution from the n = 2 
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Firmre 4.3: Contributions of the first five modes of resonance (n =l through 5) to the 
total attenuation (the imaginary part of I&) for 79 pm radius polystyrene 
particles in water. 
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mode (ellipsoidal oscillations) soon becomes important as it undergoes resonance at 

about 3 MHz. In the figure we see that the n = 3 and n = 1 modes undergo resonance 

next, etc. Therefore, the attenuation never really achieves the f 4 dependence that would 

be predicted by the scattering theory; but rather, it displays the combined behavior shown 

in Figure 4.4. Thus, it can be said that the resonance frequencies of the various modes of 

oscillations cause the high frequency behavior of the polystyrene particles to become 

quite complicated. 

It should be noted that the reason why the peaks appear truncated, in the region 

where the theory predicts very high peaks in the attenuation, is because in those regions 

the attenuation increases dramatically to levels which are beyond the measuring 

capabilities of the instrumentation used in this study. 

In contrast, these peaks and troughs do not appear in the attenuation behavior 

predicted by the theory of Allegra and Hawley (1972) for soda-lime glass particles. This 

behavior is shown in Figure 4.5. Unlike the polystyrene data, the attenuation data for the 

soda-lime glass particles do not peak at several different frequencies. Rather, for each 

mode n we see broad “hills” separated by narrow “valleys”. The total attenuation does 

not appear to go through several resonances, but instead has one broad “overall” peak 

which is a mean contribution, of sorts, of all the individual resonance behaviors. The 

difference between the behavior for the polystyrene and soda-lime glass particles at the 

higher frequencies seems to arise mainly from the different elastic properties of the two 

materials. Also, the density of the soda-lime glass particles is significantly different from 

that of water. The soda-lime glass particles exhibit significant translational oscillations. 
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Figure 4.4: Example of the dependence of attenuation on fkequency,f, for a slumy of 
polystyrene particles in water. Dashed lines are asymptotic slopes of the 
attenuation for low and high frequencies. 



Figure 4.5: Contributions of the first three modes of resonance (n =l through 3) to the 

total attenuation (the imaginary part of k,,) for 79 pm radius 
monodispersed glass particles in water. 
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As a result, the low frequency behavior is completely governed by the viscous effects and 

the n = 1 mode. It should be noted that small frequency attenuation is about two orders of 

magnitude greater for the soda-lime glass particles than for the polystyrene particles. 
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Chapter 5: Inverse Problem for Determination of 
Particle Size Distributions 

5.1 Inverse Problem Theory: 

Determining the particle size distribution of a solid-liquid suspension is of great 

practical interest. It has been suggested in the literature that this distribution may be 

determined by measuring the attenuation of a sound wave propagating through the 

suspension as a function of the frequency of the wave. The main premise is that the 

attenuation caused by a particle as a function of frequency depends on its size; and, 

therefore, the attenuation measurements can be inverted to determine the particle size 

distribution -- at least when the total volume fraction of the solids is small enough such 

that particle interactions and detailed microstructure of the suspension play an 

insignificant role in determining the acoustic response of the suspension. Indeed, this 

general principle has been exploited successfully to determine the size distribution of 

bubbles in bubbly liquids (Commander and McDonald (199 1); Duraiswami (1993); and 

Duraiswami et al. (1998)). Commercial “particle sizers” based on acoustic response are 

in the process of being developed/marketed for characterizing solid-liquid mixtures (Oja 

/ and Alba (1997)). The main objective of this chapter is to investigate under which 

circumstances such a problem can be solved for solid-liquid systems, The attenuation is 

predicted in the calculations from the linear theory of Allegra and Hawley (1972). It will 

be shown that the success of the acoustic method for determining detailed particle size 
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distributions is limited, depending on the nature of the particles and the frequency range 

over which the input (attenuation) data are available. 

We now consider the inverse problem. That is, given only the total attenuation a,, 

as a function off, it is desirable to determine +(a) using equation (4.13). Inverse 

techniques have been explored by many investigators with regard to the acoustic 

evaluation of dispersed phase systems. 

Duraiswami (1993), after exploring a number of possible regularization strategies 

such as truncated singular value expansion, moment collocation techniques, and 

Tikhonov regularization and optimization, employed a Tikhonov regularization scheme 

and optimization to solve the inverse problem of determining the size distribution of 

bubbles in bubbly liquids from measurements of attenuation and change in phase speed. 

The basic idea behind the Tikhonov regularization technique is that the problem is 

formulated in such a way that the norm of the solution and the norm of the residual error 

are sought to be minimized. This technique also takes advantage of the fact that the 

bubble size distribution function is generally a smooth function. Further details of this 

technique will be discussed later in this chapter. 

This type of straightforward method of solving the integral equations, i.e., 

discretizing the integral domain into a number of elements and converting the integral 

equation into a system of linear equations in unknowns @(ak) at a selected number of 

points ak in the domain, cannot be used in the solid-liquid slurry inverse problem since 

the resulting equations will be ill-posed, Figures 5.la & b illustrates the ill-posed nature 

of the problem. Figure 5.1 a shows two very different particles size distributions 
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Figure 5.1 a: Two significantly different particle volume fraction distributions 
which yield similar attenuation spectra. 
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Figure 5.1 b: Attenuation spectra obtained from the volume fraction distributions in 
Figure 5.la. The circles correspond to the results obtained when using 
the distribution shown by a dashed line in Figure 5.1 a, and the crosses 
correspond to the result obtained when using the distribution shown by 
the solid line in Figure 5.1 a. 
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whose attenuation spectra, shown in Figure 5.lb, are seen to be essentially the same. 

These two curves were obtained by starting with a smooth, log-normal particles size 

distribution (dashed curve in Figure 5.1 a) and generating the attenuation versus frequency 

data using the forward theory (circles in Figure 5.lb). A random noise of 1 % was then 

added to the data, and equation (5.2) with E = 0 (which is equivalent to integral equation 

(4.13)) was subsequently solved to yield the particle size distribution indicated by the 

solid line in Figure 5. la. The crosses in Figure 5.lb correspond to the attenuation 

spectrum determined from the forward theory using the new particle size distribution. It 

should be noted that the attenuation is evaluated with a smaller frequency increment than 

the one used for the original distribution. It is seen that the attenuation from the two 

distributions agree with each other to within 1 % for the frequencies marked by the 

circles. The attenuation spectrum for the latter particle size distribution does exhibit an 

oscillatory behavior in between the frequency increments, particularly at 10 MHz, but 

these oscillations occur only for a very narrow frequency range and would have been 

missed altogether had the attenuation been determined at only the input frequencies. 

Since the true particle size distribution is expected to be smooth, only solutions 

which are reasonably smooth can be permitted. This restriction may be imposed in 

several ways. In the present study, the primarily used regulatization technique is that due 

to Tikhonov (Kress 1989) which was successfully used for bubbly liquids by Duraiswami 

(1993). An alternative method is presented at the end of this section. Accordingly, 

equation (4.13), which is based on the theory of Allegra and Hawley (1972) is multiplied 
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with &(f , a)df and integrated over the frequency range to obtain a simpler integral 

equation in which the right-hand side is only a function of a: 

fm~am~c;(f,a)ci(f,a’)~a’)da’df =b(a)=fmra,ot(f)&(f,a)df, 

f rnin amin f min 

(5.1) 

where (amin, amax) and (fmin,fa are the radius and frequency ranges. The above integral 

equation is now regularized as explained below by adding a small term 

~(4 - 12ft)( w h ere primes denote derivatives) to its left-hand side. Thus, 

E[ e(a) - l2 @‘(a)] + amjYk(a, a ‘>q+ ‘p ’ = b(a), 

amin 

(5.2) 

is obtained, where 1 is a suitably chosen length scale and K(a,a ‘) is a kernel defined by 

f max 

+,a')= 1 ~(f,+(fd)df. (5.3) 

f min 

Equation (5.2) is an integro-differential equation and needs two boundary conditions. 

Usual practice is to take the derivative of $(a) to be zero at the two end points: 

41(amin > = 4’(amax) = O. (5 4 

It should be noted that amin and amax are not, in general, known a priori. One expects $ to 

also be zero at the two end points. Thus, the range (amin - amax ) must be determined by trial 
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and error so that both 4 and its derivatives are approximately zero at the extreme values of 

a. 

Now it can be shown that the solution of equation (5.2) subject to the boundary 

conditions given by equation (5.4) minimizes 

amax 
E+E 5 [{tia,)’ •t I2 1,,(a)]2jay (5.5) 

amin 

where E is the measure of error between the actual attenuation and the computed 

attenuation: 

f 
2 

max %-rin 

E = 1 j b(f ,@(a& - atot (f) df . (5.6) 

f min arnin 

Since both E and the second term in equation (5.5), i.e., the integral, are non-negative, 

minimization of equation (5.5) ensures that the solution of equation (5.2) will be free from 

large oscillations in 4. In other words, highly oscillatory distributions such as the one 

shown in Figure 5. la. are rendered inadmissible when equation (5.2) is solved with finite, 

positive E in place of the original integral equation (5.1). Thus, we have regularized the 

problem of determining 4. 

If a large E is chosen, then the oscillations in 4 decrease, but increase the error in 

$(a) increases since then the equation solved is significantly different from the original 

integral equation. Small E, on the other hand, yields unrealistic $(a) having large 

oscillations when the data CX,,~) are not exact. An optimum choice of E, therefore, depends 

on the magnitude of the uncertainty or error in the measured attenuation versus frequency 
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data. 

5.2 Inverse Problem Calculation Results: 

The theoretical calculations which accompany the experimental results in this 

dissertation are performed by Dr. Peter D.M. Spelt and Professor Ashok S. Sangani at 

Syracuse University. Both the theoretical study and computations are performed by these 

individuals as part of the overall Acoustic Probe Development Project being funded by 

the US DOE Environmental Management Science Program Grant # DE-FG07- 

96ER14729. A formal presentation of the theoretical and computational work presented 

herein may be found in Spelt et al. (1998). 

As mentioned in the previous section, an optimum choice of parameter, E, 

depends on the magnitude of the uncertainty or error in the attenuation versus frequency 

data. This concept is tested by first determining the exact atot (f) using the forward 

theory for a given $(a) with a small random noise of about 1 % magnitude added to it 

before the inverse calculations are performed. This random noise is introduced to 

simulate the error which would be present in experimentally obtained attenuation versus 

frequency data. To obtain the optimum value of s, equation (5.2) is solved for several 

different E’S, and the error E is plotted versus E to find a minimum value of E. This 

minimum value of E, however, may lead to volume fraction distributions in which $(a) 

may have physically unrealizable negative values for some values of a. To prevent the 

realization of this possibility, the constraint Q(a) 2 0 for all a is satisfied a posreriori by 
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setting +(a) = 0 for all a’s for which the solution of equation (5.2) yields negative values 

of +(a). Thus, the computed value of E is based on $(a) 2 0. 

The integro-differential equation (5.2) was solved in the following manner. After 

discretizing the domain (amin to amax) into N - 1 equal segments and the frequency domain 

into A4 - 1 logarithmically equal segments the kernel K(ai, aj), is first evaluated for i, j = 

1, 2,..., N (cf. equation 5.3) using a trapezoidal rule for the integration over the frequency 

range. As was indicated by Duraiswarni (1993) it is important to calculate the integral 

over the particle radius rather accurately. Thus, it was assumed that $(a) varied in a 

piecewise continuous manner in each segment, and a 12-point Gauss-Legendre 

quadrature was used to evaluate the integral in equation (5.2). A second-order central 

difference formula was used to evaluate @‘(a) at all points except the endpoints a,in and 

a max- The boundary conditions 4’(amin) = 0 and 4’(amax) = 0 were approximated 

using, respectively, second-order forward and backward difference formulae. Application 

of equation (5.2) at all the discretization points together with the boundary conditions can 

be expressed with the above scheme as a system of linear equations: 

i = 1,2,...,N 7 (5.7) 
j=l 

where @j = aj 
4 1 

and bi =b(ai). Th e a b ove set of equations was then normalized 

by dividing all the equations by the greatest element of the kernel, K(ai, aj), Km for all i, 

j, times the segment length, Aa = (amax - amin)/( N - 1). This set of equations was 

subsequently solved using a standard IMSL subroutine for linear equations. 
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Once the b are determined for a selected value of E, the constraint +j 2 0 is 

satisfied by setting, as was mentioned previously, all $j = 0 for all negative values of $j. 

The error, E, as given by equation (5.6), was subsequently evaluated using a trapezoidal 

rule for integration over the frequency range. The optimum value of E was determined by 

stepping logarithmically through several values of E and plotting E versus E. 

A typical result (N = 30, M = 112, fin = 0.1 MHz, fmx = 17 MHz, amin = 15 pm, 

and a,, = 35 pm) for the error in the resulting attenuation as a function of s is shown in 

Figure 5.2. It should be noted that here E is actually the value of s divided by K,Aa. 

Upon examining Figure 5.2, one can see a clearly defined optimum value of c. 

Computations were also made with larger M to confirm that the resulting volume fraction 

distribution was not affected by the further refinement in the integration over the 

frequency range. 

It should be noted that both E and I are parameters which were chosen so as to 

minimize the error E. The value for I was taken as / = (a,,, - a kn)/n, and E was 

computed by varying both E and n. The value of n was varied from 1 to N. It was found 

that when E was plotted versus n and E, E was much more sensitive to E than it was to n. 

In general, it was found that the results where n was close to N were slightly better than 

those where n was close to unity. Therefore, n was chosen to equal 30. For larger values 

of N (N > 40), it was found that choosing R = N led to more oscillatory behavior for $j. 

This behavior is to be expected since choosing a larger value of n, and hence, a smaller 

value of I will permit larger values of @‘(a). 
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Error in the attenuation as a function of E. Fieure 5.2: 
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. In order to obtain the results for the volume fraction distribution using the above 

mentioned regularization technique, the forward theory was used to first generate 

attenuation data for an assumed volume fraction distribution. Small random noise was 

added to the generated data to mimic experimental error in measured attenuation data. If 

the procedure fails for the generated data with small amount of noise added, it would 

certainly fail for any real experimentally obtained data. 

The calculation is initially performed for a frequency range of 0.1 to 15 MHz in 

order to investigate the success and limitations of the technique. This range roughly 

coincides with the range of frequency employed in the attenuation measurement 

experiments. Also considered is a larger range of frequency to determine if better 

estimates of the particle volume fraction distribution could be achieved if the attenuation 

data at higher frequencies were available. The examination of higher frequency results is 

important because there are commercially available acoustic probes which can operate at 

tiequencies up to 150 MHz. 

The particle sizes first considered are those which are of the same order of 

magnitude as the wavelength of the sound waves somewhere in the above mentioned 

frequency range. This requirement is satisfied for particles of size about 10 to 100 urn in 

radius. It should be noted that particles of larger sizes would merely shift the observed 

behavior to the left in an attenuation versus frequency plot. The smooth particle volume 

fraction distribution (dashed line) in Figure 5.la shows an example of a log-normal 

particle size distribution which is employed because it is a commonly used and smooth 

distribution. As in the forward problem calculations, the inverse problem calculations are 
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performed for polystyrene and soda-lime glass particles. These two types of particles 

form a good basis for examination of the capabilities and limitations of the inverse 

problem technique because the polystyrene particles are almost neutrally buoyant with 

respect to water and deformable, while the soda-lime glass particles are much more dense 

than water and quite rigid. The physical properties of these two materials are shown in 

Table 3.2 in Chapter 3. 

The first volume fraction distribution results obtained from the inverse problem 

are shown in Figure 5.3. These results are for polystyrene particles with a narrow size 

distribution in the range of 20 to 30 urn in radius. However, the particle size range 

initially employed was somewhat larger, ranging from 5 to 100 pm in radius; and the 

frequency range was 0.1 to 17 MHz. The results for this particle size range are shown in 

Figure 5.3, and it is clear that the volume fraction distribution, evaluated from the inverse 

technique, is in very good agreement with the original input particle volume fraction 

distribution. The result for the particle volume fraction distribution can be further 

improved by making the particle size range smaller (a close-up of the improved result is 

shown as a dashed line in Figure 5.4). 

In Figure 5.5 a more complicated, bimodal, volume fraction distribution is 

considered for the polystyrene particles. This distribution has a particle radius range of 

20 to 45 pm with peaks at approximately 25 and 38 pm. The attenuation as a function of 

frequency for this volume fraction distribution is shown in Figure 5.6. The maximum 

frequency used in the inverse calculation is indicated in the figure by a square. It is seen 

that the frequency range includes the first two resonance peaks of the attenuation curve. 
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Figure 5.3: Inverse problem solution for polystyrene particles in water. The solid 
curve is the volume fraction distribution used to generate the attenuation 
curve shown in Figure 5.7a (withf,, indicated by a square)* and the 
dashed curve is the solution to the inverse problem for partidle radius 
range of 1 to 100 pm and using 50 ‘bins’ of particle sizes. 
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Figure 5.4: Solution of the inverse problem when a random noise of 5 % standard 
deviation is introduced in the attenuation (input) data. The solid line is 
the exact result; the dashed curve is the result when no noise is introduced; 
the dash-dotted curve is the result after the introduction of the noise. These 
calculations are for polystyrene in water. 
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Figure 5.5: Solution of the inverse problem for a bimodal distribution of polystyrene 
particles, using 30 particie size bins. The solid curve is the exact result, 
and the markers represent the inverse problem solution when using a value 
offmnx indicated by a square in Figure 5.6. 
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Fieure 5.6: Attenuation versus frequency curve for polystyrene particle volume 
fraction distribution shown in Figure 5.5. 
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From the results shown in Figure 5.5 we can see, once again, that the inverse procedure 

recovers this distribution quite well. 

As has been discussed previously, one of the difficulties in solving inverse 

problems is that they tend to be ill-posed. That is, small errors in the input (attenuation) 

data can lead to large changes in the solution (volume fraction distribution). Of course, 

there is always a certain amount of error present in experimentally obtained attenuation 

data. The inverse problem results presented so far were obtained with no noise added to 

the input attenuation data. To imitate the practical situation, a random noise of 5 % 

standard deviation was added to the input data. It turns out this error is approximately of 

the same order of magnitude as the error in the experimentally obtained attenuation data 

for polystyrene shown in Figure 4.2. The resulting volume fraction distribution is shown 

in Figure 5.4 (dash-dot line). The calculations were repeated with a noise of 10 % 

standard deviation (not shown), and the computed volume fraction distribution was 

considerably different form the input distribution, but the main features of the distribution 

were still preserved by the inverse computations. 

The results which have so far been presented would suggest that the inverse 

technique can be employed with reasonable success. There are, however, limitations. 

The inverse problem technique yielded erroneous volume fraction distributions for 

smaller particles when the above mentioned frequency range (0.1 MHz to 17 MHz) was 

used in the computations. In order for the size of the particles to be determined there 

must be at least one transition in the attenuation versus frequency curve, namely the 

transition from the thermal attenuation dominated regime to the scattering dominated 
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regime which occurs when the dimensionless wavenumber becomes approximately O( 1). 

If the particles are very small this transition may not occur over a fixed frequency range. 

However, it will be shown that the results are quite sensitive to the frequency range which 

is chosen for the calculations, even when the transition is included in the frequency range. 

Figures 5.7a & b illustrate the effect of varying the maximum frequency,f,,, on 

the computed volume fraction distribution. As seen in Figure 5.7a the resonance in the 

shape oscillations of the polystyrene particles leads to a change in the slope of the curve 

just before the first resonance. This transition occurs just before the point marked with a 

circle in Figure 5.7a. There appears to be a marked improvement in the results shown in 

Figure 5.7b whenf,, is chosen corresponding to a point marked by a cross in Figure 5.7a 

over those obtained with the point corresponding to a circle, which does not include the 

second change in slope. The point marked with a cross corresponds to a frequency 

greater than the frequency at which the second change in slope occurs for larger particles 

but less than that for smaller particles. This gives rise to a solution of the inverse 

problem (cf. Figure 5.7b) which is reasonably accurate for larger particles but not as 

accurate for smaller particles. Also shown in Figure 5.7b are the results whenf,,, is 

chosen to coincide with the end of the first resonance peak in the attenuation versus 

frequency plot. This is the point marked with a square in Figure 5.7a. The resulting 

volume fraction distribution shows that when the first resonance peak is included in the 

attenuation data, the resulting volume fraction distribution predicted from the inverse 

problem solution is quite accurate. 
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JSzure5.7a: 

FREQUENCY (Hz) 

Input attenuation data for four different upper bounds on frequency to 
determine the influence of the frequency range over which the attenuation 
is specified on the solution of the inverse problem. This attenuation curve 
is for polystyrene in water. The solid curve is the exact result; Cl, cutting 
off the frequency range after the first attenuation peak; +, cutting off the 
frequency range just after the second change in slope in the attenuation 
curve; 0, cutting off the frequency range just before the second change in 
slope in the attenuation curve; and 0, cutting off the frequency range just 
after the third attenuation peak. 
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Figure 5.7b: Results of the inverse problem solution for four different frequency 
ranges using the same marker types as in Figure 5.7a. 
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It should, however, be noted that one cannot alleviate all the diffkulties 

mentioned above by merely choosing a wide enough frequency range of interrogation. 

Figure 5.8 shows results of the inverse problem calculations for three different values of 

f-. The dashed curve corresponds to terminating the frequency range at the end of the 

first resonance peak, as in Figure 5.7a. The dash-dot curve corresponds to terminating 

the frequency range at the end of three resonance peaks; and the dotted curve corresponds 

to terminating the frequency range at lo9 Hz, a frequency which is approximately fifty 

times greater than the first resonance frequency. Figure 5.8 shows that the results of the 

inverse calculation actually deteriorate from those calculated after the first resonance 

peak if a much larger range of frequency is employed. The deterioration of results is due 

to the different modes of oscillation which may undergo resonance. As is shown in 

Figure 4.4, a monodisperse suspension will exhibit several resonance frequencies 

corresponding to various shape oscillation Pn (n =2, 3, . . .) modes. Therefore, a second 

peak in the attenuation versus frequency curve for polystyrene particles could, for 

example, correspond either to a Pj mode for a larger particle, or it could correspond to a 

Pz mode for smaller particle. The inverse calculations performed in this work used only 

the first six modes (n I 5), but in practice the acoustic response may be further 

complicated by the higher modes of oscillation for frequencies of the order of 1 O9 Hz 

considered here. 

Since including an extremely wide frequency range with several resonance peaks 

seems to adversely affect the inverse calculations, one may consider terminating the 

attenuation data just beyond the first resonance peak. This strategy may not be successful 
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Figure 5.8: Using too large of a frequency range over which the attenuation data are 
available for polystyrene particles in water can deteriorate the results. The 
solid curve is the exact result; the dashed curve is the inverse problem 
result when using the data of Figure 5.7a below the point marked by a 
‘0‘ the dash-dotted curve represents the results when this endpoint is 
shifted to the point marked by ‘0‘; and the dotted curve is the result 
when this endpoint is shifted to 1000 MHz. 
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if the volume fraction distribution is truly bimodal as was seen earlier in Figure 5.5. If 

the second resonance peak is omitted from the attenuation data by considering a 

frequency range with a maximum that is less than the frequency marked with a square in 

Figure 5.6, for example let the maximum be the frequency marked with the triangle; then 

the inverse calculation yields rather poor results as shown in Figure 5.9. It is interesting 

to note that the inverse technique computes rather accurately the volume fraction 

distribution of the larger particles, whose resonance behavior was included in the data; 

but it fails to accurately predict the volume fraction distribution for the smaller particles, 

whose resonance behavior is not included in the attenuation data. 

Figures 5.1 Oa & b show the inverse technique results for a very broad unimodal 

distribution for polystyrene particles, The resonance peaks of the different particles 

overlap in this case, resulting in the absence of peaks in the attenuation versus frequency 

curve (cf. Figure 5.1Oa). Figure 5. lob shows the results of the inverse calculation for 

three different cut-off frequencies. The largest frequency, marked by a square in Figure 

5.1 Oa, is larger than the second transition frequency of small as well as large particles, 

and this appears to produce excellent results. 

We note that in the cases shown so far where the inverse calculations yielded poor 

results the failure is particularly severe for smaller particles. This phenomenon may be 

explained when one considers that the total error, E, will be dominated by the errors at 

large frequencies, since the attenuation there is quite large. When I?,+,~, < 1 in the 

frequency domain that is considered, the small particles’ volume fraction appears in 

Figures 5.7b and 5.9 to be underestimated, while the large particles’ volume fraction is 
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Figure 5.9: Inverse problem solution for a bimodal distribution of polystyrene particles 
(same distribution as in Figure 5.5) when cutting off the frequency range 
over which the attenuation was given between the first and second 
attenuation peaks. 
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Fleure 5.1 Oa: Attenuation versus frequency curve for the same inverse calculation for 
polystyrene particles in water whose results are shown in Figures 5.7a 
& b, but with a broader size distribution. 
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FieureS. 1 Ob: Resulting volume fraction distribution for the broader distribution 
attenuation data shown in Figure 5.1 Oa. 
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slightly overestimated. This problem was addressed in some calculations by dividing 

both the attenuation and 6 byf*. However, only small improvements were realized by 

modifying the attenuation data in this manner. It should be noted that the inverse 

calculation results presented in Figure 5.9 were obtained in this manner. 

Figures 5.1 la, b, & c provide some insight into why the choice offmax can greatly 

affect the results of the inverse calculation. These figures show three-dimensional plots 

of the kernel, K (for the same values offmu considered in Figures 5.7a & b) plotted 

against particle radius, ai and aj . We see that whenf& = 10.4 MHz, corresponding to 

the circle in Figure 5.7a, the kernel has a maximum for ai = uj = amaX. The kernel for 

smaller particles is rather small in comparison; and as a consequence, the inverse 

technique could determine the larger size particle volume fraction correctly but failed for 

the smaller particles. In contrast, the kernel forf- = 17.1 MHz, corresponding to the end 

of the first peak in Figure 5.7a, shows significant variations for a wide range of values of 

ai and uj (cf. Figure 5.1 lb). This behavior of the kernel apparently leads to a much more 

accurate inverse solution. Finally, the kernel forfmx = 30.4 MHz, corresponding to the 

end of the third resonance peak in Figure 5.7a, shows a less pronounced structure 

(cf. Figure 5.1 lc) which explains the fact that the inverse results actually deteriorated 

when using such a wide frequency range. 

Inverse problem calculations were also performed to determine the kernel, volume 

fraction distribution, and attenuation in the bubbly liquids examined by Duraiswami 

(1993). The inverse procedure worked quite well for bubbly liquids as is shown in 

Figures 5.12a, b, & c. Figure 5.12a shows the input and computed bubble volume 
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Figure 5.1 b: The kernel, K(a, aj ) for polystyrene particles in water when using for 
fmar the value of frequency indicated by a ‘0’ in Figure 5.7a. 
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Fieure 5.1 lb: The kernel, K(ai, aj ), for polystyrene particles in water when using for 
f,, the value of frequency indicated by a ‘+’ in Figure 5.7a. 
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j3Pure 5.1 lc: The kernel, K(a, aj ), for polystyrene particles in water when using for 
fmar the value of frequency indicated by a ‘El’ in Figure 5.7a. 
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Figure5.12a: Results of the inverse problem solution for air bubbles in water. Bubble 
volume fraction distribution for a total gas phase volume fraction equal 
to 0.004. 
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Figure 5.12b: The kernel, &a,, ai ), for air bubbles in water at a total gas phase volume 
fraction of 0.004. 
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Figure 5.12~: The attenuation spectrum for air bubbles in water at a total gas phase 
volume fraction of 0.004. 
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fraction distributions to be in excellent agreement. The kernel, as shown in Figure 5.12b, 

has smooth variations over a wide range of bubble radii. The resulting attenuation as a 

function of frequency is shown in Figure 5.12~. The main reason why the inverse 

technique appears to be somewhat more successful for bubbly liquids is that there is only 

one resonance frequency for bubbles of each size. Therefore, so long as the frequency 

range is wide enough to cover the resonance frequency of all the bubbles, it is possible to 

accurately determine the volume fraction distribution. 

If one recalls the notable difference between the attenuation data for polystyrene 

and that for soda-lime glass particles, it was the absence of the multiple resonance peaks 

for the soda-lime glass particles (cf. Figure 4.5). Along with this fact, it was found that 

the inverse calculation results for the soda-lime glass particles were generally poor. 

Figure 5.13a shows an inverse problem result for small soda-lime glass particles which is 

still reasonable; however, that shown for larger particles in Figure 5.13b is quite poor. 

The reason for this result lies in the shape of the kernel, which is shown for the 

latter case in Figure 5.13~. When this kernel is compared with those for polystyrene 

particles (cf. Figure 5.1 lb) and for bubbles (cf. Figure 5.12b), it can be seen that the 

kernel for the soda-lime glass particles is relatively flat. This behavior is indicative of an 

inverse problem which is rather hard to solve. 

Based on the above discussion, it can be said that the success of the Tikhonov 

regularization in solving the inverse problem is somewhat limited. Although reasons are 

given as to why this method worked well for bubbly liquids and not as well for slurries, 

other techniques were examined to investigate whether they might be more generally 
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successful. With that in mind, an alternative method based on linear programming was 

attempted. 

The constraint +(a) 2 0 was satisfied only a posteriori in the Tikhonov scheme. 

To ensure that the error was minimized while satisfying this constraint, the original 

inverse problem is reformulated as an optimization problem. The simplest scheme is that 

to minimize the error 

fin ax amax 

I pxf Y +++a - atot (f) df Y (5.8) 

fminl %in I 

instead of the integral of the square of the quantity enclosed by the two vertical bars at 

each frequency. Constraints on the solution are used a priori in optimization via linear 

programming; here $(a) 2 0 is used. Imposing an upper limit on the total volume fraction 

(maximum packing) can also be incorporated but is not essential. After discretizing the 

frequency range by M and $(a) by N discrete values, one can write 

5 Bu4(nj) - atot (fi) = % - vi UiyVi 20 i=1,2 ,..., M . 

j=l 

(5.9) 

Here, Bi,j is the discretized form of the integral operator in equation (5.8); and ui and vi 

are, as yet, unknown, non-negative variables. It can be shown (Delves 1985) that 

minimizing the absolute value of equation (5.9) is equivalent to minimizing 

M 

C(“i + vi) 
i=l 

(5.10) 
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with equation (5.9) as a constraint together with the constraints Ui, Vi 2 0 (i = l,, . .&I) 

and 4(ai) 2 0 (i = 1,. . .,IV). It is essential here that at the optimum ui vi = 0 for each i, 

which makes the solutions of the two minimization problems, equations (5.8) and (5.9), 

identical. 

Although the above linear programmin g scheme is a completely different method 

for solving the inverse problem, the results obtained from it were found to be very similar 

to those obtained from the Tikhonov method. It was shown earlier that the Tikhonov 

regularization fails when the frequency range over which the attenuation data are 

provided is made too small. In Figures 5.14a & b linear programming results are 

presented for the same problem solved by the Tikhonov method in Figures 5.7a & b. The 

Tikhonov method results are also presented in Figure 5.14b (open square markers) for 

comparison. From these figures it is clear that there is no improvement. In fact, there is 

actually a deterioration of results. Similarly, it was found that increasing the frequency 

range cut-off beyond the point marked with a square in Figure 5.14a actually made the 

results worse, as it had in the solution in Figure 5.7a. The other problem where the ’ 

Tikhonov regularization failed was in the case of relatively large soda-lime glass particles 

(cf. Figures 5.13a & b). The linear programming technique also failed to yield good 

inverse results for this case 
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Fieure 5.14a: Attenuation spectrum for polystyrene particles in water where the data are 
used in the linear programming results shown in Figure 5.14b. 
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Chapter 6: Effective Medium Theory and 
Experiments for Concentrated Slurries 

6.1 Effective Medium Theory: 

As mentioned earlier, the measurement of the attenuation of acoustic waves through 

a suspension of solid or fluid particles can be used to infer the suspension properties. 

When the particle volume fi-action in the suspension is very small the particle interactions 

may be neglected, and the attenuation as a function of the sound wave frequency can be 

determined by examining the interaction of a single particle with the incident wave as has 

been done by a number of investigators in the past and in Chapter 4. As mentioned 

earlier, Foldy (1945) examined the problem of scattering in dilute bubbly liquids. Epstein 

and Carhart (1953) and Allegra and Hawley (1972) examined, respectively, the case of 

dilute emulsions and dilute slurries. Since the attenuation behavior is strongly dependent 

upon particle radius, the attenuation versus frequency data for dilute suspensions may be 

used to determine particle size distributions, as was shown by Duraiswami (1998) for the 

case of bubbly liquids. The corresponding problem for dilute slurries has been examined 

in Chapter 5. 

In many processes it is desirable to monitor continuous flow of non-dilute 

suspensions. The particle interactions can have significant effects on the acoustic 

behavior of non-dilute suspensions, and at the present, rigorous calculations accounting 

for their effects are lacking. Direct attack on the problem, i.e. solving the linearized 
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energy, momentum, and continuity equations for multiparticle systems, appears daunting 

even with the development of efficient computers. Thus, it is necessary to develop a 

suitable approximate theory and to assess its validity by comparison with the 

experimental data obtained from different kinds of suspensions. 

Two approximate theories commonly used for predicting effective properties of 

non-dilute suspensions are the cell theory and the effective medium theory. The cell 

theory models particle interaction effects by assuming that each particle is surrounded by 

a spherical shell of fluid. This particle-cell assembly is assumed to interact with the rest 

of the suspension in the least possible manner by requiring, for example, that the 

tangential stress and the heat flux at the boundary between the cell and the surrounding 

suspension are zero. The cell theory has been used for predicting the average force on a 

particle in a fixed bed of particles by Happel and Brenner (1973) and for determining the 

attenuation of sound waves in slurries by Strout (199 1). The main criticism of the cell 

theory is its ad-hoc nature. It is not clear, in general, what conditions must be applied at 

the cell boundary to ensure the minimal interaction between the cell and the rest of the 

suspension. Furthermore, it is not even clear that the interaction between the cell and the 

surrounding suspension must be minimal. 

Kuwabara (1959) proposed another model for determining the force on a particle in 

a fixed bed that assumed that the fluid vorticity, and not the tangential stress, vanishes at 

the fluid-particle boundary and obtained estimates of the force that are different from 

those given by Happel and Brenner (1973). 
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In the effective medium theory the particle-cell assembly is assumed to be 

immersed in a uniform suspension with properties which are determined by requiring that 

the governing equations in the particle-cell assembly are consistent with the averaged 

equations for the suspension. Semi-theoretical reasoning is used to select proper 

boundary conditions at the interface between the cell and the effective suspension. This 

selection of boundary conditions renders the effective medium theories somewhat less 

ad-hoc than the cell theory. As a result, the effective medium theory is the approximate 

theory of choice whenever rigorous calculations involving multiparticle interactions are 

not feasible or are to time consuming to be practical. 

In recent years, the effective medium theory has proven to yield reasonably accurate 

estimates in a number of cases for which the detailed multiparticle interaction 

calculations are carried out with the help of high performance computers. This includes 

the calculations of the force on a particle in fixed beds, effective viscosity and elasticity 

of random suspensions (Ladd 1990), the Nusselt number for heat transfer from an array of 

cylinders (Wang and Sangani 1997), and the diffusivity of proteins in bilipid membranes 

(Dodd et al. 1995). The effective medium theory is also applied to the light scattering 

problem, a problem which is quite similar to the acoustic problem of interest here; and its 

predictions are shown to compare well with experiments on the light scattered by 

suspensions (Ma et al. (1990)). 

In this chapter an effective medium theory is developed to predict the attenuation of 

sound waves in non-dilute monodispersed suspensions. The accuracy of the theory is 
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assessed by comparing its predictions against the experimental data available in the 

literature and with new data obtained in this study. 

6.1 .l Linearized Equations: 

Consider a small amplitude plane acoustic wave with frequency, o, propagating 

through a uniform, monodisperse suspension of solid particles of radius, a. Let us write 

the density as po + pe-‘O’ , the temperature as To + Te-‘” , and the velocity as 

ue -‘OX. When the amplitudes of p, u, and Tare small, the terms involving the products 

of these quantities can be neglected from the continuity, momentum, and energy 

equations to obtain the following linearized equations: 

. -iup+pgV@u=O, (6-l) 

ao,, 
- iU&Ui = - 

Lkj ’ 
F-2) 

and -iupoC,,T= @j -~-pocJ?-l(y - l)V*u. (6.3) 
j 

In writing equation (6.3), we have made use of the linearized equation of state to 

eliminate the pressure from the usual energy equation. The stress tensor amplitude, og,, 

for a Newtonian fluid i 

oij = [I C2P0 
-+I$ 
- iwy 

(6.4) 
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where do is the deviatoric component of the rate of strain tensor amplitude 

dij 
[ 

& ++i zg Veu =pF --g-3 ij . (6.5) 
j i 1 

In the above equations Cv is the constant volume heat capacity and y = CP / C,, is the 

ratio of specific heats, p and CL,, are the shear and bulk coefficients of viscosity, c is the 

speed of sound through the fluid, and l3 is the coefficient of thermal expansion. It should 

be noted that the first and third terms inside the square brackets on the right-hand side of 

equation (6.4) are related to the thermodynamic pressure amplitude by 

Finally, qj = - kZ/&j in equation (6.3) is the heat flux, k being the thermal 

conductivity. 

Inside the solid particles equations similar to equations (6.1) through (6.3) apply 

with the stress tensor, in this case given by Landau and Lifshitz (1986) as 

where A and p are the Lame constants for the particles, which are assumed to be 

perfectly elastic. Note that for solids it is customary to write the stress in terms of 

displacement and not velocity. For small amplitude oscillatory motions the amplitudes of 

the two are, of course, related by a factor of l/(- iw) , and this fact has been used in 
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writing the first term on the right-hand side of the above equation. Note also that the 

factor x + (2/3)jT ’ th b lk is e u modulus of the solid. Thus, the isotropic part of the stress 

tensor represented by the terms inside the square brackets in the above equation arises 

from the density and temperature changes in the solid. The deviatoric stress tensor, 2~ , 

is defined in manner similar to equation (6.5), but with the fluid viscosity replaced by 

pp = ii/(- iw) . T hi s term may be thought of as a “particle viscosity*‘. It should be 

noted that the Lame constant, p, is sometimes referred to as the shear modulus. 

The above equations must be solved subject to the boundary conditions of 

continuity of velocity, temperature, heat flux, and traction ( Ognj, nj being the unit 

outward normal at the particle surface) at the interface between the particles and the fluid. 

In concentrated suspensions particle interactions are significant and the rigorous 

evaluation of sound wave speed and attenuation through the suspension would require a 

very difficult task of solving the above set of equations in a domain containing many 

particles. We shall introduce suitable approximations to convert this multiparticle 

problem to a single particle problem in Section 6.1.4. But first, we shall derive 

ensemble-averaged equations for the suspension and show how their solutions can be 

related to the overall speed and attenuation of waves through the suspension. 

6.1.2 Ensemble Averaged Linearized Equations for Suspensions: 

In this section we ensemble average the equations for the amplitudes of density, 

velocity, and temperature in the fluid and solid phases, and obtain, thereby, the linearized 
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continuity, momentum, and energy equations for the suspension. It will be shown that 

the resulting equations have a form similar to the equations for a single phase, provided 

that the suspension is assigned suitable properties, which we refer to as the effective 

properties of the suspension. An important outcome of the averaging process will be that 

it will yield rigorous expressions for various effective properties of the suspension. 

Let g(x) be the particle indicator function defined to be unity when the point, x, is 

inside any of the particles and zero when x is in the fluid. The properties of the liquid and 

particles are denoted by the subscripts, L and P, respectively. The ensemble averaged 

variables are denoted by angular brackets. 

Multiplying the continuity equation for the liquid by the liquid indicator function, 

(l-g); and that for the solid particle by g; adding the two; and averaging the resulting 

equation yields the continuity equation for the suspension 

- ‘w(P) + POL ((I- .dv l uL)+POP(gV@UP)=O. 68) 

The last two terms on the left-hand side of equation (6.8) must now be expressed in terms 

of the divergence of the average velocity, i.e. (V l U) , so that the resulting equation 

resembles the continuity equation of a single phase medium (cf. equation (6.1)). We 

begin with the identity 
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The gradient of the indicator function is zero at all points except at the particle-fluid 

interface, where it is proportional to the Dirac delta function owing to the step jump in g 

across the particle-fluid interface. 

More specifically, vg=- n+-xs), (6.10) 

where x = xs represents the surface of the particles; 6 is the Dirac delta function; and n is 

the unit normal vector pointing into the liquid, at the particle surface. At the particle- 

liquid interface it is required that the velocity be continuous. Because the velocity is 

continuous across the solid-liquid interfaces, the last term in equation (6.9) vanishes. The 

second term on the right-hand side of equation (6.9) still contains as an unknown the 

quantity, (gV l Up). S’ mce the equations of small amplitude acoustics are linear, it is 

expected that this quantity depends linearly on (V l U) . Therefore, one can write this 

term as 

(6.11) 

where 4 is the volume fraction of the solid particles. Substituting (gv l up ) from 

equation (6.11) into equation (6.9) yields the continuity equation for the suspension 

(equation (6.8)) to be given by 

(6.12) 

with the effective equilibrium density of the suspension to be used in the suspension 

continuity equation, i.e. (PO), is given by 
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Physically, Xv , represents the ratio of the average velocity amplitude inside the particles 

to that in the suspension. Once again, this coefficient, and such other coefficients to be 

introduced in this section will, in general, depend on complex multiparticle interactions; 

and details of its evaluation will be described later. 

The right-hand side of equation (6.14) can be simplified by using the identity 

The last term in the equation (6.17), is related to the jump in traction across the interface 

and vanishes owing to the boundary condition that Oonj be continuous at the particle- 

fluid interface. Thus, it follows that the right-hand side of equation (6.14) simply equals 

the divergence of the average stress in the suspension, i.e. the momentum equation for the 

suspension is given by 

a( > -iW(/70)m(Ui) = i’ . 
i 

(6.18) 

We must now supplement the above momentum equation with an expression for the 

average stress. The linearity of the equations implies that the stress amplitude will be 

linear in the gradient of the average velocity amplitude and (T) . 
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Let us first consider the isotropic part of the stress, or equivalently, the stress trace. 

Multiplying the isotropic part in equation (6.4) by (l-g) and that in equation (6.7) by g 

and averaging, we obtain 

with 

= CZPOLIYL + @p (6.20) 

and 

(6.2 1) 

(6.22) 

The coefficient h, was defined earlier (cf. equation (6.11)). The parameter, AT, , on the 

other hand, is a new coefficient which is defined as the ratio of the average temperature 

amplitude inside the particles to that in the mixture, that is 

@AT(T)(x) = (g(x)TP(x)). (6.23) 

Both the effective c2p0 I y and the bulk viscosity of the suspension depend on the 

coefficient, h,. This dependence is not surprising since both depend on the average 

dilatation amplitude inside the particles. The result that the effective bulk viscosity, 
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h,ef , of the suspension depends only on the bulk viscosity of the fluid may seem 

strange at first sight, but it is really a consequence of the way the isotropic part of the 

stress is defined for the liquid and solids (cf. equations (6.4) and (6.7)). The stress arising 

from thermal expansion or, equivalently, temperature fluctuations depends on 

~0 (y - l)/flo of the two phases and the relative temperature fluctuations in the two 

phases. 

Since the deviatoric stress amplitudes in the individual phases depend only on the 

velocity gradient amplitude, it is expected that the average deviatoric stress is linear in the 

gradient of average velocity amplitude. It must also be traceless. If it is assumed that the 

suspension is macroscopically isotropic, then the average deviatoric stress is 

characterized by a single effective (shear) viscosity, ,U Ed . Thus, we may write 

(6.24) 

To obtain the effective (shear) viscosity, uefi one must evaluate only one component of 

the average deviator-k stress. We can take, without loss of generality, the mean velocity 

amplitude to be given by 

( u x =e >( > ‘k,efs”l 
e1, (6.25) 

where e, is the unit vector along the x,-axis, taken to be in the direction of propagation of 

the plane wave, and k, ef , is the effective wave number for the compressional wave 

through the suspension. The 1 l-component of the deviatoric stress is given by 
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h)= 2(,2)-+$). (6.26) 

The last term on the right-hand side of equation (6.26), being related to the dilatation 

amplitudes, can be readily related to the coefficient, h,, introduced earlier. The first term 

on the right-hand side can be expressed in terms of a coefficient, hd,, defined by 

(6.27) 

With this definition, it is straightforward now to relate (dl 1) to the gradient in the 

velocity amplitude: 

&l) 2 +k > 
(4,)=+-q + @d(pP -pL)]i-$L + @&P -pL)] dzk 3 

(6.28) 

Substituting for (u) fi om equations (6.25) into (6.28) and also into (6.24) with i = j =l 

and comparing the resulting expressions yields the following expressions for the effective 

viscosity: 

p - p, )( 3& - A/J) > (6.29) 

Finally, the energy equation for the suspension, obtained by averaging (1 -g) times 

the energy equation for the liquid, plus g times the energy equation for the solid to yield 

-qPoG)e(q=- ~ -(Poc,p-l(Y - l))ev+) (6.30) 

j 
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Here, an argument similar to the one used for equation (6.17) has been used to simplify 

the energy flux term (thereby using the boundary condition at the particle surface that the 

heat flux is continuous). It should be noted that in equation (6.30), the effective heat 

capacity of the suspension is given by 

(pOcV>e =pOLcvL + &T(p,PcvP -POLcvL)y (6.3 1) 

with hy defined by equation (6.23). The effective property, (~0 C,, pm’ ( y - 1)) 
e’ 

appearing in the last term in the right-hand side of equation (6.30) is related to A,, and the 

expression for evaluating it is obtained by replacing hy in equation (6.22) by A,. 

The average heat flux is given by 

( > 4j = 
d(T) 

-Kefl ’ 
% 

with the effective conductivity given by 

(6.32) 

(6.33) 

where the coefficient, h, is the ratio of the average temperature gradient amplitude inside 

the particles to that in the suspension, i.e., 

In summary, the continuity, momentum, and energy equations for the suspension 

(6.34) 

are given by equations (6.8), (6.18), and (6.30). The averaged stress tensor is given by 

equations (6.19) and (6.24). The averaged heat flux is given by equation (6.32). These 
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equations resemble the equations for the single phase given in Section 6.1.1 with suitably 

defined effective properties of the suspension. 

6.1.3 Wave Equations for the Suspension: 

In order to find an expression for the attenuation of sound in the suspension, it is 

necessary to derive wave equations for the suspension, as was done by Epstein and 

Carhart (1953) for a pure liquid. The derivation of those authors is followed closely. As 

shown by these investigators the acoustics equations permit three waves: a thermal wave, 

a shear or rotational wave, and a compressional wave. The last one is the most significant 

one as far as the attenuation of a planes acoustic wave is concerned. The other waves are 

important in determining the disturbance produced by a test particle in the suspension as, 

we shall see in the next section. 

We decompose the average velocity amplitude in scalar and vector potentials as 

given by 

( > u =-VQ>+VxA. (6.35) 

Since the curl of a gradient of any scalar function is zero, A can be specified to within a 

gradient of an arbitrary scalar function. To remove this arbitrariness, an additional 

restriction is imposed that A be divergence free, i.e., V*A = 0. It may be noted that the 

vorticity amplitude equals -V 2 A. 

Introducing this decomposition in the momentum equation for the suspension 

(equation (6.18)) and rearranging yields 
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(6.36) 

Here, the vector identity, V2 a = V(V l a) - V x (V x a), is employed. Similarly, the 

energy equation (equation (6.30)) becomes 

-iw(pgC,)e(~)=reffV2(~)+(pgC,P-1(Y -1)) V2Q- 
e 

(6.37) 

In equation (6.36) both sides must vanish separately because a rotational vector field 

cannot balance an n-rotational field. Hence, with the right-hand side being zero, using the 

previously mentioned vector identity and VaA = 0 yields 

(6.38) 

with kfEM = 
iw(PO)m 

48- 

being the effective wavenumber for shear waves through the 

suspension. The subscript, EM, refers to the effective medium. 

The left-hand side of equation (6.36) being zero gives an expression for (T) in 

terms of the velocity potential: 
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[ - ‘w(Po), a- 
( > T= 

{;(c~Po/Y)m +(&?8? +$?f)}V2@] 

. ( Pok-09G)m ’ 

(6.39) 

Eliminating (T) f? om the energy equation for the suspension (equation (6.37)) by 

substituting the above result gives 

Q+(E-F+G)V2@-EFV4@=0, 

with 

E = (c2po’y)m i ( 4 - 

( > PO mm2 PO mu ( > 
Pv,eff + Tj Pefl 

) 

. 

F= 
lKeff 

@(PoCv >e 

(6.40) 

(6.41) 

(6.42) 

G= (p~c,B-‘(y - l))e( p”(ypFd)cv) 
/((Pg)m”l(pgcv)e). (6.43) 

m 

Equation (6.40) can be written in the form 

k;-MV2 + 1 
I( 

ktgMV2 , (6.44) 

so that @ = <DC + a, with 

V2 +kzEM oc = 0, (6.45) 
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V2 +k& at =O. (6.46) 

The effective wavennmbers for the compressional and thermal waves are given by, 

respectively, 

k-2 
l/2 

cEA4 =++G)++ (E-F+G)2 +4EF , 

k-2 
l/2 

tEM =+(E-F+G)-+((E-F+G)2 +4EF 
I 

. 

(6.47) 

(6.48) 

As mentioned earlier, the compressional wavenumber is the most important one as far as 

the propagation of the acoustic plane wave is concerned. The imaginary part of &EM 

gives the attenuation while o divided by the real part of kcEM gives the phase speed. 

6.1.4 An Effective-Medium Model: 

To determine the attenuation and phase speed, we must now estimate the various 

effective properties of the suspension. This requires determining the five coefficients: h,, 

I,,, XT, hd, and h,. Let us begin with h,, which represents the ratio of the average 

dilatation amplitude inside the particles to that in the suspension. 

The coefficient, h,,, is defined by equation (6.1 l), which is equivalent to 

(6.49) 

Here, we have introduced the conditionally averaged field. Thus (u) (XI X 1) the 

ensemble averaged velocity amplitude at point x, given that in all the ensembles used in 

the averaging a test particle is centered at x 1. I’( x 1) is the probability density for 
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finding a particle with its center in the vicinity of x1. For uniform, monodisperse 

suspensions P(X) = n = 34 , n being the number density of the particles and 4 

the particle volume fraction. 

We shall use an effective medium approximation for determining the conditionally 

averaged fields, and, hence, the use of the integrals, such as the one appearing on the 

right-hand side of equation (6.49). All effective medium approximations must satisfy the 

criterion that far from the test particle, i.e., for Ix-xl1 + a, the conditionally averaged 

fields,such as(u) (~1x1) must approach the corresponding unconditionally averaged 

fields, such as (u) (x) . On the other hand, for Ix-xl1 _ < a, i.e., for a point inside the test 

particle, the conditionally averaged fields must satisfy the equations governing the 

particle phase. The simplest kind of effective medium approximation, then, assumes that 

the conditionally averaged equation satisfies the suspending fluid equations for Q I r I R 

and the unconditionally averaged equations for the suspension for r 2 R. Here, r = Ix-xl/ 

is the distance from the center of the particle. Different effective medium approximations 

differ in their choice of R. Some investigators choose R = a, which eliminates the fluid 

region altogether. This makes the subsequent analysis very simple; but, unfortunately, 

the estimates obtained with R = a are typically inferior, and in some cases unphysical. 

For example, it may yield negative effective properties at high volume fractions. Other 

investigators choose R = a@ l/3 with incorrect reasoning that the volumes occupied by 
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the particle and fluid for T I R must be proportional to the volume fractions of the two 

phases. In the present study, we shall choose R to be given by 

R l- s(0) 1’3 
-= 
a ( 1 4 ’ 

(6.50) 

with S(0) the zero-wavenumber limit of the suspension structure factor, defined by 

S(O) = n I[ +-lo) - p(O)p, (6.51) 

where P(rj0) is the probability density for finding a particle near r given that there is a 

particle with its center at the origin. (Note that P( r[o) = 6(r) for Y I a.) The structure 

factor of the suspension can be determined experimentally by a light scattering technique; 

but in the absence of such information, one may choose S(0) to correspond to that of a 

hard-sphere molecular system for which the well-known Camahan-Starling 

approximation yields quite accurate estimates of the structure factor as a function of the 

volume fraction, 

s(0) = (hg4 
1+4~+4~2-4#3+#4’ 

(6.52) 

The effective medium radius, R, based on S(0) was first introduced by Dodd et al. 

(1995), who compared the results of rigorous multiparticle interactions for determining 

the short-time self- and gradient diffusivity of proteins in bilipid membranes with those 

obtained by the effective medium approximation and found very good agreement 

between the two. In the problems concerned with determining the collective mobility or 

the sedimentation velocity, where each particle is acted upon with a constant force, it was 
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shown in Sangani and MO (1997) that the conditionally averaged velocity has the correct 

leading order behavior at large r only when R is chosen according to equation (6.50). 

For small volume fractions, S(0) given by equation (6.52) behaves as 

and R + 2a. Thus, in “well-stirred” dilute random suspensions, the 

effective medium begins at r = 2a according to equation (6.50) and the fluid region a < r 

< 2a corresponds to the excluded region vohnne region. Note that the more usual choice 

ofR=a@ -l/3 would, on the other hand,?suggest that the effective medium at a very 

large distance from the test particle in a dilute suspension which is unphysical except for 

the situations such as dilute periodic or “well-separated” random suspensions defined by 

Jeffrey ( ) (For such arrays S(0) is small when 4 is small and equation (6.50) also gives 

.) Thus it is not surprising that R based on equation (6.50) will give 

better estimates of the effective properties at small to moderate volume fractions 

compared to those obtained with R = a4 -l/3 . Indeed, Sangani and MO (1997) have 

shown that the coefficients of corrections to the effective conductivity and 

elasticity obtained using equation (6.50) are much closer to the rigorous results for these 

coefficients obtained by detailed pair interaction calculations than those obtained with 

Before closing this brief review of effective medium approximations, we should 

perhaps note here one more class of effective medium approximations in the literature. 
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These approximations involve immersing a pair of particles in the effective medium. 

Examples are the calculations by Kim and Russel(l995) who estimated the permeability 

of a fixed bed of particles, calculations for the effective viscosity of suspensions with 

hard-sphere spatial distributions, and Ma et al. (1990) for the attenuation due to 

scattering. These calculations generally require far greater effort, comparable to direct 

multiparticle calculations, and do not necessarily yield superior estimates compared with 

the simple approximations based on a single particle. On the other hand, the single 

particle approximations will be inadequate for the suspension problems in which the 

changes in microstructure due to imposed flow and their effects, in turn, on the 

suspension properties must be addressed. 

Returning now to the problem of estimating coefficients h,, etc. using the effective 

medium model consisting of particle-fluid assembly of radius, R, imrnersed in a medium 

with the effective properties of the suspension, we write the velocity inside the test 

particle in terms of scalar and vector potentials as in the previous section. For the plane 

wave traveling along thex,-axis with (U)(X) = exp(ik,EM l x)el we have for Jx-xl1 

I a, 

(@cP)(~I~~) = exp(ikcEM l Xl)?inc2n+ l)APnPn(p)in(kcPr). (6.53) 

n=O 

(%P)(xlxl) = exp(ikcEA4 l X 1)Cin(2n+ 
n=O 

l)BPn Pn (L+n (ktPr) 3 (6.54) 
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(AP)(XI x1) = exp(ikcEA4 l Xl)~in(2n+l)CPnP,1(~)in(k,pr), (6.55) 
n=O 

where r =I- I X X 1 , p = co&l, 8 being the angle between x - x 1 and kcEM, j, is the 

spherical Bessel function of the first kind (regular at r = 0), and Pn is the Legendre 

polynomial of degree n (P’n is associated Legendre polynomial of degree n). Ap is the 

only nonzero (azimuthal) component of A. 

Similar expressions can be written for a < r < R for which the relevant 

wavenumbers in the expressions for <D,L, <D TV, and AL are, respectively, kcL , ktL , 

and ksL . Both the spherical harmonics of the first kind and second kind (corresponding 

to waves emanating from r = 0) must be included in the expression. This leads to a set of 

six unknowns for each mode n describing the motion in the liquid shell. Finally, for r > 

R, the potentials consist of the plane wave corresponding to the unconditional motion 

plus the outgoing wave with wavenumbers kcEM, ktEM, and ksEM . Thus a total of 

12 unknowns are needed in describing the motion for each mode n. These unknowns are 

determined from the boundary conditions of continuity of velocity, traction, temperature, 

and heat flux amplitudes at r = a and r = R. Note that the conditional density and 

temperature amplitudes can be determined from the expressions for (DC, Qt , and A 

using the expressions given in the previous section. We keep a total of Nmodes (typical 

calculation uses N = 5) and solve the resulting 12N equations numerically. 
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We now return to the calculation of h,. One must first substitute for 

Vwlp =- V2Qp = k,ZpcDcp + k2 CD rp rp in equation (6.49). One may now define 

the coefficient, qc, as 

&7c(@c)(x) = n !xBxll<a (%P)(xlxl)qxl)~ (6-W 

Similarly a coefficient, qt, is defined with 0, replaced by at . The integration in the 

above must be carried out over all x, such that (x-x1( I a. To convert this to an 

integration over r, we use the identity 

eXp[ikcEM l XI] = eXp[ikcEM l x]exp[- irk,+] 

= exp[ik,EM l x]fim(- l)m(2m + l)jm(kcr)Pm(,u)’ (6’57) 
= 

Now substituting acp form equation (6.53) into (6.56) to give, with zcEM 3 kcEMa, 

3 
vc= 2 2 2 (2n + l)APn [ZcP-h-l (z=P)jn (zcEM) 

zcE~ -zcp n=o 
(6 58) 

- GEMjn (zcP)jn-l (zcEM)] 

In the special case of n = 0, in-1 (z) should be replaced by cos(z)/z. Here we have used 

the solution of equation (6.53); the integral over the radius of the product of two spherical 

Bessel functions and ? is given by Gradshteyn and Ryzhik (1994). Using this result, one 

can simply write 
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Equation (6.39) shows that the temperature field is linear in @, and @ I . Following the 

notation of Epstein and Carhart (1953) and Allegra and Hawley (1972), where the 

temperature field is written as T = b,<D c + b, @ t, one finds that AT, as defined by 

equation (6.23), is given by 

AT = cbcP hEA )% + cbtf’ /bEAd h * (6.60) 

Note that the unconditionally averaged ( T> = bcEM (<D ,- ) because the unconditionally 

averaged (CD t ) = 0. 

The other h’s are evaluated in a similar manner and are inter-connected. The 

definition of 4 is first written as an integral similar to that in equation (6.49) for the 

component of the velocity inside the particle in the direction of the wave. The velocity 

inside the particles can now be split up into three parts (two velocity potentials and a 

rotational contribution), so that one can write 

Av =flc +/I?’ +n,A, (6.61) 

where e and e are the n-rotational and rotational field contributions, respectively. 

The h-rotational contributions to & are 

(6.62) 

and a similar expression for 1, @‘(j t pl us re ace zCp by ztp and Apn by Bp, ), where 

terms that give a spherical Bessel function of negative order are omitted. In deriving 

equation (6.62) use has been made of equation (6.57) and 
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exp[- ik,EM l s]V,(a(s) = V, {[- ikcEM l s]@(s)} 

+ ik cEMexp[- &EM l s]@(s) ’ 
(6.63) 

with s = x - x,. The divergence theorem is used to evaluate the integral of the first term 

on the right-hand side of equation (6.63); the second term is seen to simply lead to qC in 

equation (6.62). The rotational contribution to hv is 

ti = -?- 2 + 
zcEM n=~ 

+ l)CPnjn (ZsP)(jn+l (zcEM) + h-1 (zcEM)). (6.64) 

Here, a similar relation to equation (6.63) is used 

exp[ - ik,EM l s]V, x A(S) = V, x ([- ik,EM l s]A(s)} 

+ eXp[- ik,EM l S]ikcEM x A(S)’ 
(6.65) 

Recognizing’that the second term on the right-hand side does not contribute to the 

component in the wave direction of the velocity inside the particle, this term is left out in 

the evaluation of *. 

The result for hv can be used to determine other h’s as well. We notice that 

Ak = (bcP ibcEA&tc + (b,p /bcEM)A:f . 

Finally, hd, defined by equation (6.27), equals 

(6.66) 

ad =;1, +itf’+i+ +$, (6.67) 

where we have, again, made use of equation (6.63), with <D replaced by u. The result for 
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. 

(6.68) 

Qt. Again, Ad 1s obtained from ec by replacing Apn by Bpn , and zcp by ztp . Those 

terms which would give a spherical Bessel function of negative order at n I 1 are omitted 

from this formula. The evaluation of Ad is complete with 

a* d 

n(2n + 1) n(n - 1) 1 
(6.69) 

- (2n + 3)(2n - 1) XnJ + 2n - 1 xnP-2 ’ 

with the short hand notation 

x n,m G 
(6.70) 

+ %34 jn (ZSP >ih (GEM ))+ 

Again, the terms which give a spherical Bessel function of negative order at n = 1 are to 

be omitted. 

This completes the calculation of the attenuation. The attenuation is the real part of 

kc,??M, given by equation (6.47), the right-hand side of which contains the effective 
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medium properties that have been expressed in the unknown parameters, ;lp , etc. These 

parameters are calculated from the above expressions by solving first, at each n, for the 

coefficients, Apn , etc., from the boundary conditions at the particle and shell interfaces. 

. 

In the boundary conditions the effective medium properties show up as well (e.g., the 

effective viscosity and conductivity), so that this procedure is repeated until the h’s have 

converged. 

6.2 Attenuation Measurements in Concentrated Solid-Liquid 
Systems: 

In order to test the effective medium theory for concentrated slurries (solids 

volume fractions greater than about 10% by volume), attenuation measurements are 

performed in slurries of Potter’s beads in mixtures of glycerin in distilled water. 

The first set of measurements is actually performed on a dilute (5 % by volume) 

slurry over the entire experimental frequency range. Although this is not a concentrated 

slurry, these data are necessary in order to test the theoretical effective medium 

calculations. Any effective medium approach to the forward problem theory should 

reduce to the theory of Allegra and Hawley (1972) for small solids volume fraction. 

Having data at lower volume fractions, such as 5 %, allows for “tuning” the effective 

medium approach by providing a basis for comparison between the results of the Allegra . 

and Hawley (1972) theory, the effective medium approach, and experimental data. If the 

effective medium approach is correctly formulated, the attenuation spectra generated in 

all three cases should be essentially the same. Data are collected using both the 
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Toneburst and PulseLFFT techniques. The experimentally obtained attenuation spectrum 

is shown, together with results predicted by the theory, in Figure 6.1. 

Attenuation measurements are then made in slurries of 10 %, 15 Yo, 20 %, 30 %, 

40 %, 45 %, and 50 % solids by volume. Figures 6.2 & 6.3 show attenuation as a 

function of solids volume fraction in the Potter’s Beads slurries for several different 

frequencies. In this figure, the experimental data (markers) are also compared with 

results of theoretical calculations (solid curves) employing the effective medium 

approach using a mean particle diameter of 130 pm with standard deviation of 22 pm. 

The results for lower frequencies (1.5, 1.75, 2.0,2.25, and 2.75 MHz) are shown in 

Figure 6.2, and the agreement between theory and experiment is rather good up to a 

solids volume fraction of approximately 0.30. Agreement is better at frequencies above 

2 MHz than for those below. The experimental data at all frequencies appear to go 

through a maximum at solids volume fraction of approximately 0.30. It should be noted 

that similar behavior was seen by Atkinson (1991) who also observed a maximum at a 

solids volume fraction of approximately 0.30, in the attenuation versus concentration 

curves he obtained for 1 .O mm diameter glass beads in a fluidized bed. The attenuation 

data from this study then go through a minimum at a volume fraction of approximately 

0.4 or 0.5, and then the attenuation begins to increase again. This behavior is interesting 

in that the attenuation curves predicted by the effective medium theory show 

monotonically increasing behavior. There is definitely a change in the apparent slope of 

the theoretical curves, but there are no local maxima or minima. Nevertheless, it can be 

said that there is fairly good agreement between the effective medium theory and 
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Aftenuation versus frequency behavior for a slurry of Potter’s beads in a Figure 6.1: 
mixture of glycerin/water at 5 % by volume-fonvard theory and 
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Fi ure g 6.2: Attefluation as a function of solids volume fraction at various frequencies in 
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experimental data at these lower frequencies for solids volume fractions up to 

approximately 0.30. 

The theory predictions begin to deviate more from the experimental data as the 

frequency increases. Figure 6.3 shows the experimental attenuation as a function of 

solids volume fraction in the Potter’s Beads slurries for the relatively higher frequencies 

(3,3.5,4,4.5 and 5 MHz), along with the corresponding effective medium theory 

predicted attenuation curves. The experimental data and theory prediction for 3 MHz 

show fairly good agreement up to a solids volume fraction of approximately 0.4. 

Otherwise for higher frequencies, the deviation between data and theory becomes 

noticeable at solids volume fractions greater than about 0.2. It should, again, be noted 

here that the experimental attenuation data display a local minimum between solids 

volume fractions of 0.35 and 0.5. And again, these local minima are not predicted by the 

effective medium theory. The deviation at the higher volume fraction and higher 

frequencies could also be attributed to the increased scatter in the attenuation data at the 

higher solids volume fractions, and the attenuation is especially large (implying small 

received voltage signals) for the higher frequencies at these higher solids volume 

fractions. 

A more encouraging look into the efficacy of the effective medium approach can 

be achieved when the theoretical results are compared with other experimental data. For 

example, Figure 6.4 shows results of the effective medium approach (solid curves) 

compared with the experimental attenuation data (markers) of Allegra and Hawley 

(1972), which are for 0.11 urn radius polystyrene particles in water at 3, 9, 15,21,27, 
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Figure 6.3: Attenuation as a function of solids volume fraction at various frequencies in 
slurries of Potter’s beads in glycerin/water. Data are shown for 3.0 MHz 
(A); 3.5 MHz (0); 4.0 MHz (+); 4.5 MHz (x); and 5.0 MHz (0) 
The solid curves represent the results of the effective medium 
calculations using a particle size distribution with 65 pm mean radius and 
standard deviation of 11 pm. - E6173. 

. 
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and 39 MHz. For these systems, the agreement between the experimental data and theory 

is rather good for all solids volume fractions over the range which attenuation data are 

available for frequencies up to 27 MHz. Even at 39 MHz, the agreement between the 

experimental data and theory is fairly good up to a solids volume fraction of 

approximately 0.2. 

Based on the results shown in Figure 6.4, the effective medium theory appears to 

describe the attenuation behavior as a function of solids volume fraction quite well, or at 

least when the particles are small and are of an elastic material like-polystyrene. It is not 

clear as to why the results for the Potter’s Beads slurries were not as good as for the 

slurry investigated by Allegra and Hawley (1972). It should be noted that the Potter’s 

particles are soda-lime glass and they are, on average almost three orders of magnitude 

larger than the particles used by Allegra and Hawley (1972). The differences between the 

results for the two sets of data could be attributed to a behavior dependence based upon 

the different, particle size governed, attenuation regimes as was seen in the attenuation 

versus frequency curves. 
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Chapter 7: Theory and Experiments for Solid-Gas- 
Liquid Slurries 

7.1 Theory for the Effective Wavenumber in Solid-Gas-Liquid 
Slurries 

The theory developed in the previous chapter can be readily extended to treat 

suspensions having more than one species, e.g., solid particles and gas bubbles, and 

particles of different sizes. In this chapter we compare the predictions of the theory to 

experiments in solid-gas-liquid systems. 

7.2 Attenuation Measurements in Solid-Gas-Liquid Slurries: 

Measurements of attenuation as a function of frequency were performed in solid- 

gas-liquid systems at low gas volume fraction. The first systems investigated were 

comprised of soda-lime glass spheres (as described in Section 3.2.1) in water at 5 % and 

10 % by volume. The gas phase bubbles were produced first by electrolysis and then by 

sparging air at 150 ml/hr through a limewood aerator (as described in Section 3.3). The 

results of these attenuation measurements are shown in Figures 7.1 and 7.2. In these 

figures, the solid-liquid data are shown on the same plot as the solid-gas-liquid data for 

comparison. It should be noted that the gas phase volume fraction in the solid-gas-liquid 

systems is fairly small. In fact, the gas volume fraction is estimated, by use of the 

photomicrographic imaging system, at approximately 0.02 for the systems where the 

bubbles were generated by the limewood aerator and at approximately 0.002 for the 
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systems where the bubbles were generated by electrolysis (and in both cases are found to 

be overestimates based on comparison with forward theory predictions “fitted” to the 

experimental data). Therefore, addition of the gas phase has little effect on the solids 

volume kaction; and it can assumed that the solids concentration remains essentially 

constant between the solid-liquid and solid-gas-liquid systems. 

Figure 7.1 shows the attenuation versus frequency results for bubbles generated 

by the limewood aerator operating at a gas flow rate of 150 ml/hi-. Comparing the curves 

for the solid-gas-liquid systems with those of the solid-liquid systems at the same solids 

concentration, the effect of the gas phase, even at these low concentrations, is quite 

apparent. The attenuation for the solid-gas-liquid slurries is essentially constant up to 

about 3 MHz, where the total attenuation is dominated by the contribution of the gas 

bubbles. Then, at higher frequencies, the attenuation begins to increase fairly rapidly as it 

becomes dominated by the attenuation due to the scattering regime for the solids. In fact, 

above approximately 6 MHz, the attenuation behavior is completely controlled by the 

attenuation due to the solid particles. This behavior is not surprising as the aerator 

generated bubbles are estimated to have a mean diameter of approximately 141 pm, and 

bubbles of this size resonate at about 0.046 MHz (46 kHz). This resonance frequency is 

well below the range of frequencies investigated in this experimental study. Therefore, 

the contribution to the total attenuation by the bubbles is expected to be fairly small, and, 

the total attenuation in this region should be dominated by the solids. Whether or not the 

true bubble diameter is actually 141 l.trn is not really relevant to the three phase behavior 

in this tail region. As long as the bubble size is such that the resonance frequency is 
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Figure 7-l: Attenuation versus frequency data for solid-gas-liquid systems of soda- 
lime glass beads in water at 5 % (lower curve) and 10 % solids by volume 
with bubbles generated by a limewood aerator with air flow rate of 150 
ml/lx. The solid-gas-liquid data (+) are shown with solid-liquid data (0) at 
the same solids concentrations. The solids size distribution has a mean 
radius of 14.9 pm with standard deviation of 3.56 pm. - E223 1. 
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below 0.1 MHz, the solid-gas-liquid data should behave in the manner shown in Figure 

7.1. A resonance frequency of 0.1 MHz implies a bubble diameter of approximately 65 

pm, which is less than one half of the reported value from the photomicrographic bubble 

measurements. The photomicrographic technique does not, however, overestimate the 

bubble diameter by a factor of two. Therefore, in this context it is adequate to use the 

reported bubble diameter as a basis to interpret the solid-gas-liquid slurry behavior. 

The influence of bubble size on the behavior of the solid-gas-liquid systems can 

be seen when the results in Figure 7.1 are compared with those shown in Figure 7.2. 

Figure 7.2 shows the attenuation spectra for the same soda-lime glass slurries as were 

shown in Figure 7.1. However, in this case, the bubbles for the solid-gas-liquid slurries 

were generated by electrolysis rather than by the aerator. Bubbles generated by 

electrolysis tend to have a smaller mean diameter (as described in Section 3.3), and this 

smaller diameter has an effect on the solid-gas-liquid attenuation results. In Figure 7.2 

the attenuation for the solid-gas-liquid slurries is considerably higher in the 0.5 MHz to 1 

MHz region than it is for the solid-gas-liquid slurries shown in Figure 7.1. Also, the 

attenuation for the solid-gas-liquid slurries in Figure 7.2 is never constant as in Figure 

7.1. The reason for this difference is the considerably smaller mean diameter of the 

bubbles in the solid-gas-liquid slurries in Figure 7.2. The electrolytically generated 

bubbles, with a mean diameter of 5 1 pm, have a resonance frequency of approximately 

0.13 MHz. This frequency is much closer to (but still outside) the frequency range of 

investigation of these experiments. Therefore, the frequency range is such that the 

resonance peak has not completely decayed away to the constant attenuation behavior 
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Figure 7.2: Attenuation versus frequency data for solid-gas-liquid systems of soda- 
lime glass beads in water at 5 % (lower curve) and 10 % solids by volume 
with bubbles generated by an electrolyzer at 40 V; 4 to 8 mA; ~1 W. The 
solid-gas-liquid data (+) are shown with solid-liquid data (0) at the 
same solids concentrations. The solids size distribution has a mean radius of 
14.9 pm with standard deviation of 3.56 pm. - E223 1. 
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observed in Figure 7.1. There is enough vestigial evidence in the lower frequency (bubble 

attenuation dominated) region of the solid-gas-liquid attenuation spectra to suggest the 

presence of the bubble resonance peak at approximately 1 MHz. It should, again, be 

noted that the solid-gas-liquid attenuation curves in Figure 7.2 are not constant over a 

significant frequency range as seen in Figure 7.1. Rather, the attenuation curves go 

through a minimum at approximately 1.5 to 2 MHz, at which the attenuation due to the 

scattering by the solid particles begins to dominate the overall attenuation behavior of the 

slurry. 

The most significant observation which can be made from Figures 7.1 and 7.2 is, 

as predicted by the theory for sound propagation in bubbly liquids, at sufficiently high 

frequencies, the attenuation due to the presence of the bubbles in solid-gas-liquid systems 

becomes so small as to be completely masked by that due to the solids. Therefore, by 

carefully choosing the frequency range of interrogation, it is possible to create conditions 

under which the presence of the gas bubbles (at small gas volume fraction) is essentially 

irrelevant, and the total attenuation is dominated by that of the solids. Also, in the event 

that some information about the size distribution and concentration of the bubbles is 

known a priori, it may be possible to predict the attenuation behavior of the bubbles and 

effectively subtract it from the overall measured attenuation caused by the solid-gas- 

liquid slurry. This approach would then yield the attenuation due to the solid-liquid 

slurry alone. This point will be addressed in more detail shortly. 

Although it is not clear if the presence of the solids changes the gas phase volume 

fraction in the solid-gas-liquid slurry relative to the bubbly liquid alone, it appears that 



148 

the volume fraction of the solids does not affect the volume fraction of the bubbles in the 

system once the solids are present. This observation is made from examination of Figure 

7.3. The figure shows experimental attenuation data for solid-gas-liquid systems with 

solids at 5 % and 10 % by volume. Also plotted are the attenuation curves predicted by 

the forward theory using the same solids volume fractions and size distribution as in the 

experiments and a log-normal bubble size distribution with a 23 pm mean diameter and 

4.3 pm standard deviation. The bubble size distribution used in the forward theory 

predictions is determined by fitting the theory results to the experimental data. The 

bubble volume k-action in each forward theory prediction is held constant at 1.5 x 10-j. It 

can be seen that both theoretical attenuation curves fit their respective experimental data 

reasonably well. The only difference between the conditions used in generating the two 

theory curves is in the volume fraction of the solids. When the solids volume fraction in 

the theory curves is adjusted for the increasing experimental volume traction from 0.05 to 

0.10, the fit between the theory prediction and experimental data is maintained. 

Therefore, although the volume fraction of the solids changes by a factor of two, the 

volume fraction of the gas bubbles remains unchanged. Thus the volume fraction of the 

solids does not appear to affect the bubble volume fraction in solid-gas-liquid slurries. 

It has been previously mentioned that if some information about the bubble size 

distribution and volume fraction is known, it may be possible to predict the attenuation 

due to the bubbles in a solid-gas-liquid slurry and effectively subtract that attenuation 

from the total to yield just that due to the solids. This procedure has been carried out in 

Figure 7.4. This figure shows the result of subtracting the bubble attenuation from the 
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Figure 7.3: Comparison between experimental solid-gas-liquid attenuation data (+) at 
5 % (lower curve) and 10 % solids (by volume) and forward problem theory 
predictions (solid curves) employing the same solids concentrations and a 
log-normal bubble size distribution with 23 pm mean radius and 4.3 pm 
standard deviation.. The bubble volume fraction used in the theory 
predictions is 1.5 x 10e5. - E223 1. 
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Figure 7.4: Results of predicting the attenuation due to the presence of bubbles in a 
solid-gas-liquid slurry and simply subtracting that attenuation from the 
total attenuation. The symbols represent experimental data for the solid- 
liquid (0) and solid-gas-liquid (+) slurries, and the curves represent the 
forward theory predictions for those slurries and the difference after 
subtracting the bubble attenuation. - E223 1. 
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total and compares it with the solid-liquid attenuation at 5 % solids by volume. The 

solid-gas-liquid forward theory attenuation curve is the same as that shown for the 5 % 

solids shown in Figure 7.3. It can be seen in this figure that the theory prediction 

resulting from the subtraction of the bubble attenuation from the total attenuation matches 

rather well with the solid-liquid data over the frequency range where those data are 

available. There is still a residual “hump” in the theory curve for the subtraction result at 

frequencies near the bubble resonance frequency. This “hump” is due to the non-linear 

volume fraction dependence of the bubble attenuation in this region which prevents 

simple subtraction from completely removing it from the total attenuation to yield only 

that due to the solids. However, the bubble resonance region is not the region of interest 

in this approach. It is the behavior in the “tail’ region, well beyond the bubble resonance 

frequency which is of interest, and the subtraction of the bubble attenuation there yields 

results which compare fairly closely with the solid-liquid attenuation data. 

As with the solid-liquid slurry experiments, it is of interest to investigate what 

effects, if any, would be contributed to the attenuation behavior of the slurry by a more 

elastic solid particle material, such as polystyrene. Therefore, further solid-gas-liquid 

attenuation experiments are attempted in systems containing polystyrene beads (Duke 

Scientific Corp., Palo Alto, CA) of 136 pm mean diameter, with standard deviation of 

13.5 pm, in water. However, no data can be collected due to the presence of other 

physicochemical phenomena which interfere with the attenuation measurements. 

Attenuation measurements could be made in the solid-liquid only systems within the 

same experimental restrictions described previously. However, when bubbles are 
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introduced into the slurry via the lirnewood aerator, the polystyrene particles are carried 

by the gas bubbles to the surface of the liquid phase where a stable foam layer is formed. 

It is apparent that a dispersed air flotation system has been established. The process of 

dispersed air flotation is described by Burns et al. (1997). The foam layer is quite stable. 

and the polystyrene particles were intimately entrained within the surface foam layer. 

The foam layer does not allow bubbles entering the test cell from the bottom to escape, 

and bubbles fi-om the surface foam layer are re-entrained when the slurry is mixed. The 

end result is a continuous increase in the gas phase volume fraction over the course of the 

attenuation measurement. This increase in the gas volume fraction soon causes the 

attenuation of the ultrasound in the slurry to become so large as to be unmeasureable. 

Attempts have been made to rectify the flotation situation, such as washing the 

surfactant from the particles and varying the slurry pH to both the alkaline and acidic 

extremes. In all cases stable surface foam layers form when the gas is introduced, and 

there is visible flocculation of the polystyrene particles. 

Some information can be gleaned from the polystyrene solid-gas-liquid 

experiments. The most prominent point is that, in the event that the density difference 

between the solid and liquid phase is small, gas entrained in the slurry will not be a major 

consideration in its characterization. The results of this set of experiments indicate that 

even at relatively small gas phase volume fraction, the gas bubbles will induce flotation 

of the solids and cause them to be removed from the slurry into a froth. The resulting 

problem of acoustic characterization of foams with entrained solids is beyond the scope 

of this work. 
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Chapter 8: Conclusions and Future Work 

8.1 Conclusions: 

The theory of Allegra and Hawley (1972) for dilute suspensions is shown to be in 

excellent agreement with experimental attenuation data obtained for slurries of soda-lime 

glass spheres in water and polystyrene spheres in water. 

An effective medium approximation for the attenuation in concentrated slurries is 

employed in which the equations of motion are derived in a manner similar to that used in 

the dilute theory. However, the effective medium approach considers a solid particle to 

be centered inside a pure liquid “shell”. Results of the effective medium approximation 

are compared with data obtained in fairly concentrated slurries, of up to 50 % solids by 

volume, of 125 pm mean diameter Potter’s Beads (soda-lime glass) in a mixture of 

glycerin and water. The agreement between the effective medium approximation and the 

experimentally obtained attenuation data is quite good up to volume fractions of 

approximately 0.30. At higher volume firactions, there is significant deviation. 

In solid-gas-liquid slurries it is determined that, at sufficiently high frequencies, 

the total attenuation of ultrasound in the slurry is dominated by the attenuation due to the 

solid particles. In addition, the bubble volume fraction in the solid-gas-liquid system is 

not affected by the volume fraction of the solid particles. It is also determined that, if the 

bubble size distribution and volume fraction are known a priori, the attenuation due to 

the bubbles in a solid-gas-liquid slurry may be simply subtracted from the total 
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attenuation in the slurry to yield only that due to the solids at frequencies well beyond the 

bubble resonance frequency. 

Tikhonov regularization and linear programming techniques are employed to 

solve the inverse problem of determining the particle volume fraction distribution from 

the attenuation versus frequency data. Although these techniques are successful in 

solving the inverse problem in several cases, it is also shown that the results are very 

sensitive to the choice of frequency range, the physical properties of the particles, and the 

nature of the particle volume fraction distribution (unimodal, bimodal, etc.). Since the 

same techniques were shown to work quite well for bubbly liquids, the failures in the 

technique results which did occur are attributed to the complex resonance behavior of the 

slurries. 

8.2 Recommendations for Future Work: 

The work which is recommended to further the progress of this area of study can 

be divided into three categories. The first category consists of work which will advance 

the development of the acoustic probe within the current scope of its development. The 

second category is work which is recommended to broaden the scope of the acoustic 

probe development project. The final category is work which is recommended to 

enhance the performance of the photomicrographic imaging system. 

The current status of efforts to solve the inverse problem for solid-liquid slurries 

indicates that the inverse problem for these systems is far more difficult to solve than for 

other systems, such as bubbly liquids. This difficulty arises due to the complicated and 
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multiple resonances exhibited by the solid particles. It is found that satisfactory inverse 

problem results can only be obtained for solid-liquid systems where the solid phase is of a 

somewhat elastic material, such as polystyrene. The lack of distinct separation between 

the various modes of resonance in glass particles makes satisfactory solution of the 

inverse problem impossible in those systems. Therefore, it is most desirable to obtain 

solid-liquid-gas attenuation data for systems where the solid phase consists of a more 

elastic material, such as polystyrene particles. The success in solution of the inverse 

problem for solid-liquid systems of this nature indicates that similar systems should be 

ideal for investigating the possibility of solving the inverse problem for solid-gas-liquid 

systems of similar composition. It is recommended that solid-gas-liquid attenuation 

experiments be attempted in systems containing particles of another material, such as 

polymethylmethacrylate (PMMA) or another system where flotation problems will be 

avoided. With a density of 1.19 g/cm’ (as opposed to 1.05 g/cm3 for polystyrene), the 

PM&LA particles are less likely to be carried to the surface by the gas bubbles; yet the 

density is still close enough to that of water to facilitate homogeneous suspension. Also, 

the PMMA is a polymeric material which should be more elastic than glass. Therefore, 

there should be the desired separation between the resonances of the individual modes of 

oscillation which made the solution of the inverse problem for polystyrene/water solid- 

liquid systems possible. 

A fluidized bed or other flow system apparatus allows for better control of the 

slurry properties. A system of this type is preferable if more economical solid particles 

could be acquired to facilitate such an apparatus. 
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Another area where further investigation is recommended is in the use of lower 

frequency transducers. Now that initial investigation has shown that the currently used 

methods of bubble generation create bubbles with resonance frequencies in the range of 

0.03 to 0.5 MHz, it would be advisable to employ transducers which operate in these 

frequency ranges. Acquisition of solid-gas-liquid data down to these frequency ranges 

would provide information about the bubble resonance peaks which would better 

delineate the contributions of the gas bubbles to the solid-gas-liquid attenuation behavior. 

Also, implementation of these lower frequency transducers may also provide a means for 

collecting more reliable bubbly liquid attenuation data. 

In regard to expansion of the scope of the acoustic probe development program, it 

is recommended that solid-liquid experimentation be revisited for the purpose of 

examining the acoustic behavior of very dilute (less than 1 % solids by volume) solid- 

liquid suspensions. 

Another possible direction in which the probe development may proceed in the 

future could be an investigation of the propagation of acoustic energy in foams. These 

foams could be both gas-liquid only and, as has been observed in this study, gas-liquid 

with entrained solids. Another method to characterize such systems could be useful. 

The final area where a considerable amount of future work can be done is in 

regard to the photomicrographic video imaging system. The current status of the imaging 

system allows for making multiple frame “movies” of bubbles and particles. 

Measurement of bubble sizes can be performed and recorded manually with reasonable 

accuracy. However, the combined hardware and software capabilities of this system offer 
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the potential for far more accurate and efficient bubble and particle size measurements 

through automation. 

The Image SXM software package allows for many manipulations of an acquired 

image and has the capability to provide an automated measurement of bubble or particle 

size distributions. However, completion of these tasks will require the creation of user- 

written “macros”, or short program codes which instruct the computer software to 

perform operations which would normally be performed manually at the keyboard. A 

user will need to create “macros” to perform the necessary thresholding, conversion to 

binary image, bubble/particle distribution measurement, and presentation of data, and/or 

writing of data to data files for computer storage. 

Another issue in regard to the imaging system is determining the proper lighting 

which should be used under experimental conditions to obtain the clearest photographs of 

the bubbles or particles with the best resolution of the bubble/particle interface with the 

liquid, or what is referred to as a large edge gradient (Bongiovanni et al. 1997). Indeed, 

there may not be a single lighting arrangement which will allow for optimum photo 

resolution of both the bubbles and particles in a solid-gas-liquid system. It is 

recommended that a study be performed to examine, in detail, the advantages and 

disadvantages of different lighting configurations as described in the literature in order to 

construct an overall imaging system which will provide for optimum use of the existing 

equipment; 
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Appendix A: Boundary Conditions from Epstein 
and Carhart (1953) and Allegra and 
Hawley( 1972) 

Given in this Appendix is a set of linear equations for unknowns which include 

the coefficients, A,, required to calculate the attenuations from equations (2.59) and 

(2.66) through (2.68), or (2.69). These equations are derived from the boundary 

conditions on the surface of a test particle. In addition to the coefficients, A,, and xn, 

of the solution of equation (2.46) outside and inside the particle, respectively; similar 

coefficients arise due to the solutions of equations (2.47) and (2.48), denoted by B, and 

C n, respectively. It should be noted that equation (2.48) is an equation for the vector 

A, rather than for a scalar velocity potential, but only the azimuthal component of A is 

non-zero. Therefore, the solution of equation (2.48) has only the scalar coefficient, Cn . 

The following notations are relevant to the equations presented here: zC = k,a , 

Zy=kTa,Z,=k,a. 

WYZ Zc ( ) + Anzchh (zc) + BnzThA (zT)- cnn(n + l)hn (zs) = 
(A-1) 
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A&)+ b$+~(~,)+ Brzhn(zT)-cn(hn(z,)+zsh~(zs))= 

&in (%) + hjn (zT)- en (h (%) + z”,.& (%)) 
(A-2) 

+ B,bTh, (ZT) = && jn (yc) + En&j, (+) (A.3) 

iup) 
(I 

Z,2 - 26 1 j, (G) - 2z,2 jg(z, 
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(-i~~~zci~(zc)-j,(z,)+A,[zch~(z,)-h,(zc)]+ 
B,[zThh(=T)-hn(zT)]- 

(Cn /2)[rzhi(r,) + (n2 + n- 2)hn(zs)] = (-4.6) 

Here, b, and bT are given by 

b T - :p[ Ci12 -[$+;], __ y (A.7) 

where p is the thermal expansion coefficient and c, is the liquid equivalent speed of sound 

for spherical compressional waves in an elastic isotropic solid given by 

. The Lame constant, x, is not really needed when the speed of 

sound, c, of the longitudinal compressional waves is specified, as one can also write 

2; = c2(1-4q(3pc2)). The above equations have also been given by Epstein and 

Cat-hart (1953) and Allegra and Hawley (1972). However, in both there are typographical 

errors. In Epstein and Carhart (1953), the last j; (y’ ) in equation (A.2) is erroneously 

replaced by hi (FS) . In Allegra and Hawley (1972), the signs of both 

(n2 +n-1) terms are wrong, and the h, (zs ) term on the left-hand side of equation 

(A.6) has an argument z” instead. Also, the first zS after cn is replaced by ?“. Not 
. 
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conecting the typographical errors in Allegra and Hawley (1972) would alter the results 

significantly. 
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Appendix B: Experimental Procedures 

B.l Slurry Attenuation Measurement Procedure: 

B.l.1 General Considerations: 

In all attenuation measurement experiments, regardless of which type of vessel or 

cell is being used, it is imperative that the separation distance between each transducer 

pair be measured once the transducers are installed. The vessel or test cell should be 

clean and dry. The electronics and instrumentation should be set up as per Figures 3.2 

and 3.4 , depending upon whether the Toneburst or FFT/Pulse Technique is being 

employed. It is recommended that, whenever possible, data should be acquired by both 

techniques as agreement between results of the two techniques provides reproducibility of 

results. Also, the Toneburst Technique provides slightly better results at higher 

frequencies and larger attenuations where significant noise in the data may interfere with 

FFT calculations. Conversely, the FFT/Pulse Technique seems to provide slightly better 

results at lower frequencies and lower attenuations where the error the difference between 

the slurry and reference water voltage signals is so small that the error in the 

measurement is of the same order of magnitude as the measurement, itself. This is the 

trend that was seen in earlier attenuation experiments; however, later toneburst 

measurements were performed by having the oscilloscope make the peak-to-peak voltage 

measurement on a waveform averaged over 50 sweeps, rather than making manual peak- 

to-peak voltage measurements in real time. Allowing the oscilloscope to make the 
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measurements does improve the data quality for the Toneburst Technique at lower 

frequencies and attenuations. 

It should also be noted that earlier attenuation measurements refer to a “Standard” 

Toneburst Technique. This technique is just the toneburst technique described in Section 

3.1.2, with the received signal going through an attenuator box, to the receiver/amplifier 

of the TB-1000 card, then on to the oscilloscope. This variation of the Toneburst 

Technique has been all but abandoned as it is sometimes difficult to achieve consistent 

receiver/amplifier performance. Secondly, in most cases it was found that the use of the 

receiver/amplifier was unnecessary, and better (more accurate and reproducible) results 

are achieved when the received signal is input directly to the oscilloscope. This variation 

of the Toneburst Technique is the “Direct” Toneburst Technique. The “Direct” method is 

the preferred Toneburst procedure, and it is the method which has been (and should be) 

employed, unless noted otherwise. 

In regard to the operation of the electronic instrumentation, it is not the objective 

of this work to reproduce information which is available in the various user’s manuals. 

The objective is, rather, to document information which is conducive to obtaining quality 

experimental results, yet is NOT available or clear in the user’s manuals. The contents of 

this work should not be construed as to obviate the use of user’s manuals. 

B.1.2 Operation of the Matec TB-1000 Toneburst Generator and 

Panametrics 5052 PR Pulser/Receiver: 
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B.1.2.1 Matec TB-1000 Toneburst Generator: 

The Matec TB-1000 toneburst generator is a digital synthesizer card installed in 

the Gateway 2000 P5-66 data acquisition computer. It is used as the signal generator for 

all measurements pertaining to the Toneburst Technique. The operation of the TB- 1000 

is fairly straightforward as the software is entirely menu driven. However, there is also a 

user’s manual available in the laboratory. 

The TB- 1000 is accessed by closing Windows and obtaining a DOS prompt. 

Change the directory to the TB-1000 directory by typing CD\TB 1000 at the C:\> prompt. 

Once in the TB- 1000 directory, the driver software may be started by typing MATEC at 

the C:\TBlOOO> prompt. The software will now start running and the toneburst card can 

be turned on by choosing the TB-1000 menu choice. As the “Direct” toneburst method 

will usually be the method used, the user need only adjust the frequency of the output 

signal and the pulse width to suit experimental conditions. More detailed operation 

instructions are provided in the user’s manual if necessary. 

The overall experimental set up is shown schematically in Figure 3.2. 

Measurements should be made at frequencies spaced fairly evenly over the operational 

range of each transducer pair. It is usually preferable to turn on the toneburst card 

approximately one half hour prior to making measurements so that the card has time to 

“warm up”. Also, it is advisable to always have some transducer connected to the 

“PULSE OUT” connector on the back of the computer so that the toneburst card is 

always “seeing” some load while the power is on. If the measurement transducers are 
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disconnected and the toneburst generator is on, an old transducer can be connected in 

place of the measurement transducers. IT IS ALSO IMPORTANT TO TURN OFF THE 

VOLTAGE TO THE TONEBURST CARD (via the software menu) BEFORE 

CONNECTING OR DISCONNECTING ANY CABLES. The TB- 1000 outputs several 

hundred volts. 

B.1.2.2 Panametrics 5052PR PulsedReceiver: 

All signals used in the FFT/Pulse technique are generated by the Panametrics 

50502PR PulserReceiver. It is a relatively simple instrument to operate, and it also has a 

user’s manual available in the laboratory. The pulser/receiver is always operated in the 

“pitch-catch” mode. This implies that the transmitter transducer will be connected at the 

T/R connector, and the receiver transducer will be connected at the RCVR connector. 

The general experimental set up is shown schematically in Figure 3.4 The pulser control 

settings (as they appear on the PulserReceiver unit) which have been determined to yield 

the best results for attenuation measurements are as follows: 

REP. RATE = 0 (Lowest setting possible WITHOUT being on MIIWEXT) 

ENERGY = 4 

ATTEN (dB) = Variable: Setting which is appropriate for experimental 

conditions. 

H.P. FILTER = OUT 

DAMPING = Variable: Setting depends upon transducer pair used. 
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The 1 MHz transducers operate best at a setting of about 

4. The 2.25 MHz, 5 MHz, 7.5 MHz, and 10 MHz transducers 

operate best at a setting of 10. 

GAIN(dB) = 40 

,B.1.3 Operation of the LeCroy 93lOA Dual 400 MHz (Digital) 

Oscilloscope: 

All acoustic signals obtained in this study are acquired by a LeCroy 93 1 OA digital 

oscilloscope. When compared to earlier models of digital oscilloscopes from various 

manufacturers, the LeCroy 93 1 OA is rather simple and intuitive to operate. All of the 

functions of which the oscilloscope are capable are menu driven, and a clear and concise 

user’s manual is available in the laboratory. It is recommended that anyone who is not 

familiar with this particular model of oscilloscope take the time to perform the tutorial 

provided by the manufacturer in the user’s manual. This tutorial demonstrates all of the 

major capabilities of the oscilloscope. 

An important detail about proper operation of the oscilloscope is that all input 

channels (Channels 1 and 2) should be set for a coupling impedance of 50 Q DC. It is 

also important to make sure that the oscilloscope is being triggered properly by either the 

toneburst card (coaxial cable connecting “TRIGGER” connector on toneburst card and 

“EXT” connector on the fi-ont of the oscilloscope) or the pulserkeceiver (coaxial cable 

connecting “+SYNC” connector on pulsekeceiver and “EXT” connector on the 
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oscilloscope). The trigger should be set at positive slope, external trigger, DC coupling 

at 1 MR; and the trigger level is set at 500 mV. 

B.1.3.1 Saving Waveforms to Floppy Diskette: 

The oscilloscope is equipped with a 3.5” floppy diskette drive allowing that 

waveforms and FFT spectra can be saved as computer files for use in calculations using 

other software packages or for later display and manipulation by the oscilloscope. It 

should be noted that when files (waveforms/FFT spectra) are being saved diskette, the 

must be saved as BINARY files IF they are to be retrieved and displayed on the 

oscilloscope at a later time. This information IS NOT provided in the user’s manual. If 

the waveforms/spectra are to be saved as data files for later importation into a software 

package for the performance of calculations, then they should be saved in an ASCII 

format. 

All the attenuation calculations in this study are performed in MATLABTM. 

Although there is a menu choice for storing files in an ASCII format suitable for 

MATLABTM, the files do not store correctly on diskette and MATLABTM will encounter 

errors when reading the files to load them. This problem is rectified by instead choosing 

the MATHCADTM ASCII file format when storing a waveform/spectrum to diskette. This 

format is one which, once the files are opened in the DOS EDIT file editor and the text 

headers are deleted leaving only data, MATLABTM will accept without error. These 

minor modifications to the data files are performed after they have been saved to diskette 

by the oscilloscope. 
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The procedure for storing a waveform/spectrum to diskette, the aforementioned 

details not withstanding, is described in the user’s manual. 

B.l.3.2 Oscilloscope Set up for Toneburst Measurements: 

When making toneburst measurements, the oscilloscope should be set up with a 

standard single channel display. The “Persistence” should be turned off, and the “Dot 

Join” should be turned on. The waveform intensity may be adjusted as per the comfort of 

the experimenter. Under the CURSOR/MEASURE option, the oscilloscope should be set 

to measure “Parameters” in the “Std. Voltage” mode, and the “Statistics” should be 

turned off. Once a signal is acquired on Channel 1, it may be shut off and the 50 sweep 

average of Channel 1 may be displayed by activating “TRACE A”. It should be noted 

that the procedure for acquiring an average waveform is described in the user’s manual. 

After an average waveform is obtained, the peak-to-peak voltage is read from the “pkpk 

(A)” line of the display, and recorded in the laboratory notebook. The time duration and 

scaling of the waveform is variable depending upon experimental conditions and user 

preference. 

B.1.3.3 Oscilloscope Set up for FFT/Fulse Measurements: 

When making FFT/Pulse measurements, the oscilloscope should be set up with a 

four channel display, although only three of the four channels are actually used. The 

procedure for obtain the four channel display is described in the user’s manual. The 

“live” time domain waveform is displayed in Channel 1. The 50 sweep average of the 
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“live” waveform is displayed in ‘TRACE A” on the second channel, and the FFT 

magnitude spectrum of “TRACE A” (average waveform) is displayed in “TRACE B” on 

the third channel. The procedure for obtaining an FFT magnitude spectrum of a 

waveform is also described in the user’s manual. 

The frequency range of the FFT spectrum is determined by the scaling of the time 

domain signal. The maximum frequency of the FFT magnitude spectrum is determined 

the Nyquist frequency. It is not the objective of this study to make an in-depth study of 

signal processing, and an excellent discussion of the FFT is given by Ramirez (1985) and 

by the LeCroy Operator’s Manual. Suffice to say that the Nyquist frequency is equal to 

one half of the effective sampling frequency (after decimation), and the effective 

sampling frequency is determined by the scaling of the time domain waveform. It is 

recommended that the time domain scaling be set so that the Nyquist frequency is 5.00 

MHz for the 1.0 MHz and 2.25 MHz transducers, and that the Nyquist frequency is 12.5 

MHz for the 5.0 MHz, 7.5 MHz, and 10.0 MHz transducers. It should be noted that there 

is also a useful discussion and exercise on the use of the FFT and decimation by Dr. 

Margaret Greenwood of the Battelle Pacific Northwest National Laboratory beginning 

on page 38 of the laboratory notebook numbered APD-005. It is recommended that this 

discussion and exercise be studied by any user not familiar with the use of FFT’s. 

It is preferable to use a rectangular sampling window for the FFT/Pulse 

measurements. The time domain waveform (pulse) should be centered as well as possible 

in the window. This should be done as the FFT algorithm assumes periodicity of the 

waveform, and waveform position in the window can affect FFT results (cf. Ramirez 
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1985). The amplitude scaling of the time domain signal should be set according to 

. 
experimental conditions. 

To perform the FFT analysis, a time domain waveform of the received pulse 

should be acquired and displayed in Channel 1. The amplitude (voltage) scaling should 

be adjusted, together with the attenuation settings on the Pulser/Receiver, if necessary, to 

obtain a distinct received pulse waveform. An average waveform should then be 

acquired in “TRACE A”. The averages are generally performed over 50 sweeps, the 

number of sweeps can be changed if experimental conditions; i.e., rapidly separating 

systems, dictate. Once the average has been performed and displayed by the 

oscilloscope, the sample acquisition in the “live” waveform should be stopped by 

pressing the “STOP” button on the control panel of the oscilloscope. The FFT magnitude 

spectrum of the average waveform should be performed as described in the user’s 

manual. Once the FFT magnitude spectrum has been acquired, the spectrum should be 

saved to diskette in an ASCII MATHCADTM format as described in Section B. 1.3.1. It 

should be noted that a “hard copy” of the oscilloscope display should be made by 

pressing the “SCREEN DUMP” button on the control panel of the oscilloscope. 

B.1.4 Operation of the Photomicrographic Video Imaging System: 

Bubble size measurements and volume fraction estimates are obtained by using 

the video imaging system described in Section 3.1.3. Video Images are obtained using 

the Company 7 “Questar” QM-100 long distance microscope which is coupled, as a 

single unit, to a Cohu Model 4810 monochrome CCD video camera. There is a user’s 
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manual for both the microscope and video camera available in the laboratory which 

describe procedures as to the care and maintenance of these instruments. It should be 

noted that the camera is “on” whenever the AC power adapter is plugged in. The 

microscope/camera unit is mounted on a sliding track which allows for variability of the 

working distance; i.e., the distance between the microscope objective and object to be 

studied. In the experiments performed in this study, it was found that a working distance 

of 17.8 cm (7”) allowed for the widest range of bubble size measurements without 

changing the focus of the microscope. Achieving the widest range of measurements is 

important in that any time the focus or working of the microscope is changed, the 

calibration must be performed to reset the pixel to distance scale in the image analysis 

software. 

Backlighting is provided by a strobotach directly behind the sample cell at a 

distance of 61 cm (24”). The strobotach is synchronized to the video camera via the wire 

lead protruding from the back of the camera. This wire is connected to the vertical update 

“pin” on the “U8” integrated circuit chip in the camera. The schematic diagram of this 

chip is available in the laboratory in the Installation and Operation Instructions manual 

for the camera. The synchronization lead wire is connected by a coaxial cable to the 

“GATE/TRIG IN” connector on the Global Specialties Corporation 40001 Pulse 

Generator.. The pulse generator is used to trigger the strobotach. The vertical update 

signal from the camera has a frequency which is actually twice the frame/second rate of 

the camera. The camera updates at twice the frame/second rate because the odd 

numbered lines on the CCD chip are acquired first, then the even numbered lines are 
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“filled in”. Therefore, the vertical update rate of the camera (60 Hz) is twice the 

frame/second rate (30 Hz), and the vertical update signal must be effectively divided by 

two by the pulse generator in order to synchronize the strobotach such that moving 

bubbles will be “frozen” in the acquired images. The pulse generator is then connected to 

the strobotach by connecting the “VAR OUT” connector on the pulse generator, via 

coaxial cable, to the “INPUT” connector on the strobotach. The amplitude of the pulse 

generator signal should be adjusted, by trial and error, to be sufficient in amplitude to 

trigger the strobotach. 

Calibration of the microscope/camera unit must be performed each time the focus 

or working distance of the microscope is changed. This calibration is performed using a 

reticle mounted on a Plexiglas plate. The reticle has a series of linear and circular scales 

the dimensions of which are marked on the reticle. The reticle is rated by the 

manufacturer (Edmund Scientific Company, Barrington, NJ) to be accurate to within 2 

pm. Calibration is performed by immersing the reticle in the liquid in which the sample 

is suspended. The focus is set so that the image of the reticle is as clear as possible, and 

then the focus is NOT to be changed during bubble measurements without recalibrating. 

It is preferable to focus on the 0.005” (127 pm) circle on the reticle as it is the smallest 

calibration feature. Once the image is focused, a one or two frame “movie” should be 

acquired using the image analysis software and saved to be added to stacks of movie 

frames of bubbles (the procedure for making movies will be discussed in the next 

paragraph). An example image of the reticle used in calibration is shown in Figure B. 1. 
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Photograph of the 0.005” diameter circle on the reticle used in calibrating Figure B. 1: 
the photomicrographic video imaging system. 
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The movie frames containing the reticle image will then be measured to set the pixel to 

length scale in the image analysis software. 

The images acquired by the microscope/camera unit are analyzed using the Image 

SX” image analysis software package installed on the Apple Power Macintosh G3 

computer which is interfaced with the microscope/camera unit. The Image SxM image 

analysis software package does not have a user’s manual per se, but it is almost identical 

to the NIH Image image analysis software package available through the National 

Institutes of Health. The NfH Image image analysis software package has an online 

manual available at the NIH Internet site at http://rsb.info.nih.gov/nih- 

image/manual/Contents.html. Images are obtained by opening Image SXV on the 

desktop of the Power Macintosh. When the Image SXM folder opens, open the program 

by double clicking on the Image SXM icon. When the program is open, a live video 

image can be obtained by clicking on the “Special” menu choice and choosing the “Start 

Capturing” option. Movies are acquired by selecting the entire image screen and then 

choosing the “Stacks” menu choice. Choose “Make Movie” option and follow the menu 

options which appear. It is usually desirable to acquire about 40 frames in each movie, 

but this number can be adjusted to match experimental conditions. An example bubble 

image is shown in Figure B.2. The details of these procedures are described in the online 

manual, and the manual should be examined by user’s not familiar with this software 

package. 

When a movie has been acquired, frames which do not have any images should be 

deleted from the “stack” as per the user’s manual to conserve disk space on the computer. 
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Figure B-2: Photograph of a electrolytically generated “bubble stream”. The bubbles are 
are generated at 40 V, 6 to 8 mA, ~1 W. 
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Also, the image f?ames of the reticle should be added to the image stack and saved with 

the movie. Calibration is perfomied by using the straight line tool to draw a diameter 

across the reticle circle. Then choose the “Analyze” menu choice and choose the “Set 

Scale” option. Enter the known distance in the appropriate units and click on the “OK” 

choice. The pixel to length scale is now set. It is usually a good idea to measure the 

reticle circle diameter vertically, horizontally, and on each diagonal and average the 

reported pixel/pm conversion factor to be used in scaling. This average value can then be 

entered manually in the set scale procedure instead of the known distance of the reticle 

diameter. 

Once the scale has been set, size measurements can be made on images by using a 

similar technique. The straight line tool is used to draw a diameter across a bubble of 

interest, and the “Analyze” menu choice is chosen. Now the “Measure” option should be 

chosen and the length of the line drawn will be displayed in microns in the “Info” display 

box. The measurement should be recorded. Measurement should only be made on 

bubbles which are in focus and are not touching other bubbles or the edge of the image 

frame. The backlighting will cause some error due to shadowing in the bubble size 

measurement. Therefore, a calibration curve of measured versus true size of polystyrene 

optical standard particles is shown in Figure B.3. 

One set of bubble size measurements is performed for bubbles generated in water 

both by electrolysis and aeration. Photographs are made of these bubbles using the above 

technique, and size mesurements are performed using the above procedure. The results of 

these measurements are used to estimate a bubble size distribution for bubbles generated 
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electrolytically at 40 V; 6 to 8 rnA; < 1 W. This size distribution is determined to have a 

mean diameter of 5 1 pm and a standard deviation of 26 pm. A log-normal size 

distribution is fitted to these data, and the results are shown in Figure B.4. 

Volume fraction estimation is obtained from knowledge of the field of view and 

depth of field of the microscope at a particular working distance, and the number of 

bubbles in a given frame averaged over the number of frames in the movie stack. This 

estimation, of course, assumes that the bubbly liquid is well mixed, and the image field is 

representative of conditions throughout the sample cell. 
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Figure B.4: Bubble size distribution determined by the microphoto,sraphic video 
imaging system and the log-normal size distribution fitted to the data. 
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Appendix C: MATLABTM Routines 

The following pages contain some of the various MATLAEP routines used to 

calculate attenuation from raw voltage data in slurries and then plot calculated attenuation 

as either a function of frequency or solids concentration. 

Not all the existing MATLABTM routines are shown in this appendix. The reason 

for this is because many of the routines are simply variations of one-another. Therefore, 

for the sake of brevity, only the most important “watershed” routines, upon which all the 

others are derived, are shown. 

The routines are annotated with comment lines to explain the progression of data 

manipulation within the routines. Each version of MATLAESTM is provided with a user’s 

manual, and the later versions available in our laboratories also have on-line help through 

NetscapeTM. The User’s Guide (black cover book) from the earliest version (v.4.2~. 1) of 

MATLABTM is available in the laboratory. Although, new versions of MATLAESTM have 

been installed on the laboratory computers, this user’s manual contains a tutorial on the 

basic functions and capabilities of MATLAB TM . It is recommended that anyone who is 

not familiar with MATLABTM take the time to read and follow the tutorial to gain 

experience in using this software package. 
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o/~This program calculates attenuation vs frequency in slees of 

%Soda-lime glass beads using Direct 
%(Toneburst) Oscilloscope Data 
%(called DIRECT.m) 

%Load 0.5 MHz water data 
load s 1 wdp5 .dat 
fkp5=[slwdp5(:,1)]; 
vwp5=[slwdp5(:,2)]; 

%Load 0.5 MHz slurry data 
load slsdp5.dat 
fsp5=[slsdpS(:,l)]; 
vsp5=[slsdp5(:,2)]; 

%Load 1 .O MHz water data 
load s 1 wdl .dat 
fwl=[slwdl(:,l)]; 
vwl=[slwdl(:,2)]; 

%Load 1 .O MHz slurry data 
load slsdl.dat 
fsl=[slsdl(:,l)]; 
vsl=[slsdl(:,2)]; 

%Load 2.25 MHz water data 
load s 1 wd2.dat 
fw2=[slwd2(:,1)]; 
vw2=[slwd2(:,2)]; 

%Load 2.25 MHz slurry data 
load slsd2.dat 
fs2=[slsd2(:,1)]; 
vs2=[slsd2(:,2)]; 

%Load 5.0 MHz water data 
load slwd5.dat 
ti5=[slwd5(:,1)]; 
vw5=[slwd5(:,2)]; 

%Load 5.0 MHz slurry data 
load s 1 sd5 .dat 
fs5=[slsd5(:,1)]; 
vs5=[slsd5(:,2)]; 
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%Load 7.5 MHz water data 
load s 1 wd7.dat 
fw7=[slwd7(:,1)]; 
vwl-/=[slwd7(:,2)]; 

%Load 7.5 MHz slurry data 
load s 1 sd7.dat 
fs7=[slsd7(:,1)]; 
vs7=[slsd7(:,2)]; 

%Load 10.0 MHz water data 
load slwdlO.dat 
fwlO=[slwdlO(:,l)]; 
vwlO=[slwd10(:,2)]; 

%Load 10.0 MHz slurry data 
load slsdlO.dat 
fslO=[slsdlO(:,l)]; 
vs1O=[slsd10(:,2)]; 

OhInput Transducer Separation Distances in cm 
dp5=4.006*2.54; 
d1=4.006*2.54; 
d2=3.9875*2.54; 
d5=4.072*2.54; 
d7=1.986*2.54; 
d10=2.040*2.54; 

%Calculate Slurry to Water voltage ratios 
vrp5=vsp5./vwp5; 
vrl=vsl./vwl; 
vr2=vs2./vw2; 
vr5=vs5 ./vw5; 
vr7=vs7./vw7; 
vr10=vs10./vw10; 

%Calculate logs of voltage ratios 
lvrp5=logl O(vrp5); 
lvrl=loglO(vrl); 
lvr2=log 1 O(vr2); 
lvr5=log 1 O(vr5); 
lvr7=log 1 O(vr7); 
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%Calculate attenuation 
ap5=-1 .O*(lvrp5/dp5) 
al=-1 .O*(lvrl/dl) 
a2=-1 .o*(lvr2/d2) 
a5=-1 .O*(lvr5/d5) 
a7=-1 .O*(lvr7/d7) 
alO=-l.O*(lvrlO/dlO) 

%Rectify with theory (put in Np/cm using natural logarithms) 
ap5=ap5*2.302; 
al=al*2.302; 
a2=a2*2.302; 
a5=a5*2.302; 
a7=a7*2.302; 
alO=a10*2.302; 

%Use one set of frequencies per transducer to plot 
f-p5=fivp5; 
fl=fwl; 
f2=fw2; 
f5=fw5; 
f7=fw7; 
flO=tilO; 

%Convert Frequency into Hz 
fp5=1 .Oe6*fp5 
fl=l.Oe6*fl 
f2=1 .Oe6*f2 
fi=l .Oe6*f5 
fl=l .Oe6*f7 
flO=l.Oe6*flO 

%Plot results 
loglog(fp5,ap5,‘.‘) 
%title(‘Direct Oscilloscope Measurements-5% glass (5 micron)‘) 
ylabel(‘Attenuation (dEVcm)‘) 
xlabel(‘Frequency (Hz)‘) 
hold on 
loglog(fl,al,‘.‘) 
hold on 
loglog(f2@,‘.‘) 
hold on 
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loglog(f5$5,‘.‘) 
hold on 
loglog(f;r,a7,‘.‘) 
hold on 
loglog(fIO,a10,‘.‘) 
hold on 

************************* Em OF DIRECT-M ***************************** 

%Program to plot average attenuation vs concentration at various fixed 
%fi-equencies for Dense Potters Beads Slurries in Glycerol/water Mixture 
%(Called AVSPH1.m) 

%Concentration (volume fraction) arrays 
clp5=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.5O];%f+5 MHZ 
clp75=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.50];%+1.75 MHz 
c2=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.5O];%f=2.0 MHz 
c2p25=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.50];%2.25 MHz 
c2p5=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.50];%+2.5 MHz 
c2p75=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.5O];%f=2.75 MHz 
c3=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.5O];%f=3.0 MHZ 
c3p5=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.501$&f-3.5 MHz 
c4=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.5O];%f=4.0 MHZ 
c4p5=[0.05 0.10 0.15 0.20 0.30 0.40 0.45 0.50];%+4.5 MHz 
c5=[0.05 0.10 0.15 0.20 0.30 0.45 0.50];%+5.0 MHZ 

%Attenuation Arrays--Attenuations are average values at tieqs. where transducers 
%overlap and data from multiple experiments is available. 
alp5=[0.0388 0.0578 0.0839 0.111 0.148 0.149 0.189 0.2811; 
alp75=[0.0436 0.0833 0.119 0.152 0.203 0.202 0.257 0.4111; 
a2=[0.0731 0.122 0.160 0.205 0.240 0.243 0.303 0.4371; 
a2p25=[0.0794 0.164 0.232 0.299 0.361 0.3 18 0.350 0.4861; 
a2p5=[0.135 0.232 0.3 19 0.393 0.502 0.449 0.43 1 0.4591; 
a2p75=[0.144 0.310 0.426 0.528 0.664 0.598 0.540 0.5721; 
a3=[0.195 0.414 0.543 0.660 0.847 0.778 0.792 0.7481; 
a3p5=[0.321 0.596 0.679 0.872 1.20 1.36 1.40 1.281; 
a4=[0.469 0.961 1.16 1.65 2.33 2.19 2.37 2.211; 
a4p5=[0.613 1.16 1.56 2.44 3.32 2.91 3.57 3.741; 
a5=[0.887 1.39 2.23 3.09 3.89 4.70 5.941; 

%Plot Results 
semilogy(clp5,alp5,‘r-‘) 
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hold on 
axis([O.O 0.6 0.0 6.01) 
semilogy(clp75,alp75,‘r-‘) 
hold on 
semilogy(c2@,‘r-‘) 
hold on 
semilogy(c2p25&p25,‘r-‘) 
hold on 
semilogy(c2p5$2p5,‘r-‘) 
hold on 
semilogy(c2p75&p75,‘r-‘) 
hold on 
semilogy(c3,a3,‘r-‘) 
hold on 
xlabel(‘Solids Volume Fraction’) 
ylabel(‘Attenuation (Npkm)‘) 
hold on 
semilogy(c3p5,a3p5,‘y-‘) 
hold on 
semilogy(c4,a4,‘y-‘) 
hold on 
semilogy(c4p5,a4p5,‘y-‘) 
hold on 
semilogy(c5,aS,‘y-‘) 
hold on 

*************************E~ OF AVCJD~~D(-jC *************************** 

%Program to calculate attenuation by FFT 
%of three phase systems of soda lime glass beads 
%in water at vol. fract.- 0.10 
%with air generated bubbles at 100 ml/min (called sgll .m) 

%Load FFT magnitude data files 
%Load 5 h4Hz water data 
load cont5w.dat 
%choose only the frequencies in the effective x-ducer operating range 
%and disregard the rest..do for all x-ducer pairs. 
n5w=max(size(cont5w)); 

%Load 5 MHz slurry w/out bubbles data 
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load cont5s.dat 
n5s=max(size(cont5s)); 
fs5=[cont5s(0.20*n5s:0.5*n5s,l)]; 
v5sag=[cont5s(0.20*n5s:0.5*n5s,2)]; 

%Load 5 MHz slurry w/ bubble data 
load cont5b.dat 
n5b=max(size(cont5b)); 
fs5b=[cont5b(0.20*n5b:0,5*n5b,l)]; 
v5sagb=[cont5b(0.20*n5b:0.5*n5b,2)]; 

%Load 2.25 MHz water data 
load cont2w.dat 
n2w=max(size(cont2w)); 
fiv2=[cont2w(0.25*n2w:0.5*n2w,l)]; 
v2wag=[cont2w(0.25*n2w:0.5*n2w,2)]; 

%Load 2.25 MHz slurry w/out bubbles data 
load cont2s.dat 
n2s=max(size(cont2s)); 
fs2=[cont2s(0.25*rGs:0.5*n2s,l)]; 
v2sag=[cont2s(0.25*n2s:0.5*n2s,2)]; 

%Load 2.25 MHz slurry with bubble bubble data 
load cont2b.dat 
rGb=max(size(cont2b)); 
fs2b=[cont2b(0.25*tQb:0.5*tQb,l)]; 
v2bag=[cont2b(0.25*n2b:O.5*62b,2)]; 

%Load 1 .O MHz water data 
load cant 1 w.dat 
nlw=max(size(contlw)); 
fwl=[contlw(0.14*nlw:0.25*nlw,l)]; 
vlwag=[contlw(0.l4*nlw:0.25*nlw,2)]; 

%Load 1 .O MHz slurry w/out bubbles data 
load contl s.dat 
nl s=max(size(cont 1 s)); 
fsl=[contls(0.l4*nls:0.25*nls,1)]; 
vlsag=[contls(0.14*nls:0.25*nls,2)]; 

%Load 1 .O MHz bubble data 
load cant 1 b.dat 
nl b=max(size(cont 1 b)); 
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%Load 0.5 MHz water data 
load thruyp5w.dat 
np5w=max(size(thruyp5w)); 
fivp5=(thruyp5w(0.03*np5w:0.07*np5w, l)]; 
vp5wag=[thruyp5w(0.03*np5w:O.O7*np5w,2)]; 

%Load 0.5 MHz sltmy w/out bubbles data 
load thruyp5s.dat 
np5s=max(size(thruyp5s)); 
fsp5=[thruyp5s(0.03*np5s:O.O7*np5s,l)]; 
vp5sag=[thruyp5s(0.03*np5s:O.O7*np5s,2)]; 

%Load 0.5 MHz slurry with bubble bubble data 
load thruyp5b.dat 
np5b=max(size(thruyp5b)); 
fsp5b=[thruyp5b(0.03*np5b:O.O7*np5b,l)]; 
vp5bag=[thruyp5b(0.03*np5b:O.O7*np5b,2)]; 

%Load 7.5 MHz water data 
load cont7w.dat 
n7w=max(size(cont7w)); 
ti7=[cont7w(O.3*n7w:0.4*n7w,l)]; 
v7wag=[cont7w(0.3*n7w:0.4*n7w,2)]; 

%Load 7.5 MHz slurry w/out bubbles data 
load cont7s.dat 
n7s=max(size(cont7s)); 
fs7=[cont7s(0.3*n7s:0.4*n7s,l)]; 
v7sag=[cont7s(0.3*n7s:0.4*n7s,2)]; 

%Load 7.5 MHz slurry w/ bubble data 
load cont7b.dat 
n7b=max(size(cont7b)); 
fs7b=[cont7b(0.3*n7b:0.4*n7b,l)]; 
v7sagb=[cont7b(0.3*n7b:0.4*n7b,2)]; 

%Load 10 MHz water data 
load cant 1 Ow.dat 
n 1 Ow=max(size(cont low)); 
fw1O=[contlOw(0.35*nlOw:0.8*n10w,1)]; 
vlOwag=[contlOw(0.35*nlOw:0.8*n10w,2)]; 
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%Load 10 h4Hz polysty slurry w/out bubbles data 
load cant 1 Os.dat 
nl Os=max(size(cont 10s)); 
fs10=[cont10s(0.35*n10s:0.8*nlOs,l)]; 
vlOsag=[cont10s(0.35*nlOs:0.8*n10s,2)]; 

%Load 10 MHz slurry w/ bubble data 
load cant 1 Ob.dat 
nl Ob=max(size(cont 1 Ob)); 
fslOb=[contlOb(0.35*nlOb:0.8*n10b,l)]; 
vlOsagb=[contlOb(0.35*n10b:0.8*nlOb,2)]; 

OhCorrect Vo g lta e Values for Receiver Attenuation and gain 
v5wg=v5wag./(l0.^((40-54)/20)); 
v5sgb=v5sagb./( 10.*((40-46)/20)); 
v2sg=v2sag./( 10.“((40-44)/20)); 
v2bg=v2bag./( 10.“((40-44)/20)); 
v5sg=v5sag./( 10.*((40-46)/20)); 
v2wg=v2wag./( 10.“((40-46)/20)); 
v 1 wg=v 1 wag./( 1 0.A((40-50)/20)); 
v 1 sg=v 1 sag./( 10.*((40-50)/20)); 
vlbg=vlbag./(l0.*((40-50)/20)); 
vp5wg=vp5wag./( 10.“((40-46)/20)); 
vp5sg=vp5sag./( 10.*((40-46)/20)); 
vp5bg=vp5bag./( 10.^((40-46)/20)); 
v7wg==v7wag./( 10.*((40-48)/20)); 
v7sgb=v7sagb./( 10./‘((40-34)/20)); 
v7sg=v7sag./( 10.*((40-34)/20)); 
v10wg=v10wag./(10.*((40-38)/20)); 
v10sgb=v10sagb./(10.“((40-24)/20)); 
v10sg=v10sag./(10.“((40-24)/20)); 

%Renaming variables to be less confusing 
v5w=v5wg; 
v5sb=v5sgb; 
v2s=v2sg; 
v2b=v2bg; 
v5s=v5sg; 
v2w=v2wg; 
vlw=vlwg; 
vls=vlsg; 
vlb=vlbg; 
vp5w=vp5wg; 
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vp5Fvp5sg; 
vp5b=vp5bg; 
v7w=v7wg; 
v7sb=v7sgb; 
v7Fv7sg; 
v1Ow=vlOwg; 
vlOsb=vlOsgb; 
v1os=v1osg; 

OhVoltage ratios 
vr2b=v2b./v2w; 
vr5b-v5sb./v5w; 
vr2s=v2s./v2w; 
vr5s==y5s./v5w; 
vrls=vls./vlw; 
vrlb=vlb./vlw; 
vrp5s=vp5s./vp5w; 
vrp5b=vp5b./vp5w; 
vr7b=v7sb./v7w; 
vr7s=v7s./v7w; 
vr 1 Ob=v 1 Osb ./v 1 Ow; 
vr1Os=vlOs./v1Ow; 

%Log of Ratios 
lvr2b=log(vr2b); 
lvr5b=log(vr5b); 
lvr2s=log(vr2s); 
lvr5s=log(vr5s); 
lvrls=log(vrl s); 
h-1 b=log(vrl b); 
Ivrp5s=log(vrp5s); 
lvrp5b=log(vrp5b); 
lvr7b=log(vr7b); 
lvr7s=log(vr7s); 
lvrl Ob=log(vrl Ob); 
lvr 1 0s=10g(vr10s); 

%Transducer Separation Distances in cm 
d5=2.014*2.54; 
d2=1.982*2.54; 
dl=l.984*2.54; 
dp5=4.7; 
d7=1.717*2.54; 
d10=1.704*2.54; 
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%Calculate Attenuation 
as2b=-1 .O.*(lvr2b./d2); 
as5s=-l.O.*(lvr5s./d5); 
as2s=-1 .O.*(lvr2s./d2); 
as5b=-1 .O.*(lvr5b./d5); 
asls=-l.O.*(lvrls./dl); 
aslb=-l.O.*(lvrlb./dl); 
asp5s=-l.O.*(lvrp5s./dp5); 
asp5b=-1 .O.*(hrp5b./dp5); 
as7s=-1 .O.*(lvr7s./d7); 
as7b=-1 .O.*(lvr7b./d7); 
aslOs=-l.O.*(lvrlOs./dlO); 
aslOb=-l.O.*(lvrlOb./dlO); 

OhNormalize attenuation by P2 
%as2b=as2b./(fs2b.*2); 
%as5s=as5s./(fw5.*2); 
%as2s=as2s./(fs2.“2); 
%as5b=as5b./(fs5b.“2); 
%asls=asls./(fs1.“2) 
%aslb=aslb./(fslb.“2) 
%asp5s=asp5s./(fsp5.“2) 
%asp5b=asp5b./(fsp5b.*2) 
%as7s=as7s./(fiv7.“2); 
%as7b=as7b./(fs7b.“2); 
%as10s=as10s./(fw10.A2); 
%as10b=as10b./(fs10b.A2); 

%Use one set of fkequencies per transducer to make plots 
f5=fiv5; 
f5b=fs5b; 
f2=fs2; 
f2b=fs2b; 
fl=fsl; 
flb=fslb; 
fp5=fsp5; 
fp5b=fsp5b; 
fl=fw7; 
f7b=fs7b; 
flO=tilO; 
flOb=fslOb; 

%Plot Results 
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loglog(f2,as2s,‘w+‘) 
hold on 
loglog@b,as2b,‘w-‘) 
hold on 
loglog(fQ.s5s,‘r+‘) 
hold on 
loglog(f5b&b,‘r-‘) 
hold on 
loglog(fl ,asl s,‘g+‘) 
hold on 
loglog(fl b,asl b,‘g-‘) 
hold on 
%loglog(fp5,asp5s,‘b+‘) 
hold on 
%loglog(fp5b,asp5b,‘b-‘) 
hold on 
loglog(f7,as7s,‘g+‘) 
hold on 
loglog(flb,as7b,‘b-‘) 
hold on 
loglog( fl 0,as 1 Os,‘y+‘) 
hold on 
loglog(fl Ob,as lOb,‘b-‘) 
hold on 
%axis([l.Oe6 l.Oe7 l.Oe-17 l.Oe-131) 
title(‘Attenuation Results’) 
xlabel(‘Frequency (Hz)‘) 
ylabel(‘Attenuation (Npkm)‘) 
%loglog(fl Or,asl Or,‘ro’) 
hold on 

************************Er\sD OF SGL1.M ********************************* 

%Program to calculate attenuation by FFT 
%of a5% Solution 
%( 15 8 micron diameter polystyrene beads) 
% 2” in Plexiglas test cell 
%This program plots FFT and toneburst results 
%(called STYRENE5.m) 

%Load 0.5 MHz water data 
%load s3wp5.dat 
%fwpS=[s3wpS(:,l)]; 
%dbmp5w=[s3wp5(:,2)]; 



198 

%Load 0.5 MHz slurry data 
%load s3sp5.dat 
%fsp5=[s3sp5(:,1)]; 
%dbmp5s=[s3sp5(:,2)]; 

%Load 1 .O MHz water data 
load sty5 lw.dat 
nlw=max(size(sty5lw)); 
fkl=[sty5lw(O.l8*nlw:0.3*nlw,1)]; 
vlwag=[sty5lw(O.18*nlw:0.3*nlw,2)]; 

%Load 1 .O MHz slurry data 
load sty5 1 s.dat 
n 1 s=max(size(sty5 1 s)); 
fsl=[sty5ls(0.18*nls:0.3*nls,l)]; 
vlsag=[sty5ls(O.l8*nls:0.3*nls,2)]; 

%Load 2.25 MHz water data 
load sty52w.dat 
n2w=max(size(sty52w)); 
fk2=[sty52w(O.3*n2w:O.5*n2w,1)]; 
v2wag=[sty52w(0.3*n2w:0.5*rQw,2)]; 

%Load 2.25 MHz slurry data 
load sty52s.dat 
rGs=max(size(sty52s)); 
fs2=[sty52s(o.3*rl2s:o.5*n2s,1)]; 
v2sag=[sty52s(0.3*rGs:0.5*n2s,2)]; 

%Load 5.0 MHz water data 
load sty55w.dat 
n5w=max(size(sty55w)); 
ti5=[sty55w(0.25*n5w:0.5*n5w,l)]; 
v5wag=[sty55w(0.25*n5w:0.5*nSw,2)]; 

%Load 5.0 MHz slurry data 
load sty55s.dat 
n5s=max(size(sty55s)); 
fs5=[sty55s(0.25*n5s:0.5*n5s,l)]; 
v5sag=[sty55s(0.25*n5s:0.5*n5s,2)]; 

%Load 5.0 MHz (repeat) water data 
Ohload sty55w.dat 
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%nSwx=rnax(size(sty55w)); 
%fw5r=[tc305wr(0.25*n5wr:O.5*n5wr,l)]; 
%v5wagr-[tc305wr(0.25*n5wr:0.5*n5wr,2)]; 

%Load 5.0 MHz (repeat) slurry data 
%load tc305sr.dat 
%n5smmx(size(tc305sr)); 
%fs5r=[tc305sr(0.25*n5sr:0.5*n5sr,l)]; 
%v5sagr=[tc305sr(0.25*n5sr:0.5*n5sr,2)]; 

%Load 7.5 MHz water data 
load sty57wdat 
n7w=max(size(sty57w)); 
fw7=[sty57w(0.40*n7w:0.8O*n7w,l)]; 
v7wag=[sty57w(0.40*n7w:0.8O*n7w,2)]; 

%Load 7.5 MHz slurry data 
load sty57s.dat 
n7s=max(size(sty57s)); 
fs7=[sty57s(0.40*n7s:0.80*n7s,l)]; 
v7sag=(sty57s(0.40*n7s:0.8O*n7s,2)]; 

%Load 10.0 h4Hz water data 
load sty5 1 Ow.dat 
nlOw=max(size(sty51Ow)) 
f?v1O=[sty51Ow(0.60*n1Ow:0.98*n1Ow,1)]; 
vlOwag=[sty51Ow(0.60*nlOw:0.98*n10w,2)]; 

%Load 10.0 MHz slurry data 
load sty5 1 Os.dat 
n 1 Os=max(size(styS 10s)); 
fslO=[sty51Os(0.60*nlOs:0.98*n10s,1)]; 
vlOsag=[sty510s(0.60*nlOs:0.98*n10s,2)]; 

%Comect Voltages for Receiver Attenuation and gain 
vlwpvlwag./(lO.*((40-52)/20)); 
v7wg=v7wag./( 10.“((40-48)/20)); 
v5wg=v5wag./(l0.*((40-44)/20)); 
%vp5wg=vp5wag./(l0.*((40-36)/20)); 
v2wg=v2wag./( 10.*((40-52)/20)); 
%v5wgr=v5wag-r./(10.*((40-50)/20)); 
vl Owg=vl Owag./( 10.*((40-40)/20)); 
%v10wgr-Y10wagr./(10.*((40-40)/20)); 
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vl sg=vl sag./( 10.*((40-52)/20)); 
v7sg=v7sag./( 10.*((40-28)/20)); 
v5sg=v5sag./( 10.*((40-30)/20)); 
%vp5sm5s a / 10.*((40-36)/20)); g. ( 
v2sg=v2sag./( 10.*((40-52)/20)); 
%v5sgx=v5 sa / 10.“((40-10)/20)); gr. ( 
v 1 Osg=v 1 Osag./( 10.*((40-20)/20)); 
%v10sgr--v10sagr./(10.*((40-10)/20)); 

%Renaming variables to be less confusing 
vlw=vlwg; 
v7w=v7wg; 
v5w=v5wg; 
%vp5w=vp5wg; 
v2w=v2wg; 
%v5wl=v5wgr; 
v 1 ow=v 1 owg; 
%v 1 OWFV 1 owgr; 

vls=vlsg; 
v7Fv7sg; 
vsFv5sg; 
%vp5s=vp5sg; 
v2s=v2sg; 
%v5sr=v5sgr; 
v1os=v1osg; 
%v 1 osx=v 1 osgr; 

OhVoltage ratios 
vrl=vls./vlw 
vr7=v7s./v7w; 
vr5=v5s./v5w; 
%vrp5=vp5s./vp5w; 
vr2=v2s./v2w; 
%vr5r-v5sr./v5wr; 
vr1o=v1os./v1ow; 
%vrl OI=V 1 Osr./v 1 Owr; 

%Log of Ratios 
lvrl=loglo(vrl) 
lvr7=log 1 O(vr7); 
lvr5=logl O(vr5); 
%1vrp5=10g10(vrp5); 
lvr2=log 1 O(vr2); 
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%lvr5r=log 1 O(vr5r); 
1vr10=10g10(vT10); 
%lvrlOr-loglO(vrlOr); 

%Transducer Sep aration Distances in cm 
%dp5=4.941*2.54; 
d1=2.008*2.54 
d2=1.995*2.54; 
%d5r=1.998*2.54; 
d5=1.995*2.54; 
d7=1.719*2.54; 
d10=1.700*2.54; 
%dlOr=1.770*2.54; 

%Calculate Attenuation 
asl=-l.O.*(lvrl./dl); 
as7=-1 .O.*(lvr7./d7); 
as5=-1 .O.*(lvr5./dS); 
%asp5=- 1 .O.*(lvrp5./dp5); 
as2=-1 .O.*(lvr2./d2); 
%as5r=- 1 .O.*(lvr5r./d5r); 
aslO=-l.O.*(lvrlO./dlO); 
%as1Or=-1.0.*(lvr10r./d1Or); 

OhMultiply by 2.302 to rectify with natural log calculation, i.e. put in Np/cm 
asl=2.302.*asl 
as7=2.302.*as7; 
as5=2.302.*as5; 
%asp5=2.302.*asp5 
as2=2.302.*as2 
%as5r=2.302.*as5r; 
as10=2.302.*aslO; 
%aslOr=2.302.*aslOr; 

%Use one set of frequencies per transducer to make plots 
%fp5=fkp5; 
fl=fkl; 
f2=fiv2; 
f5=fw5 
f7=h7; 
flO=ftvlO; 
%f5r=fk5r; 
%fl OFfwl Or; 
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%Load simulation data 
load theo.dat 
ff=[theo(:,l)]; 
a@[theo(:,2)]; 
%ff-ff* 1 .Oe6; 

%Toneburst results (for comparison) entered as arrays. The “fb#” stands for 
%Frequency of toneBurst for # MHz transducer. The “ab#” stands for Attenuation 
%of toneBurst for # MHz transducer. 
fb=[3.Oe6 3.2e6 3.25e6 3.3e6 3.4e6 3.5e6 3.6e6 3.7e6 3.75e6 3.8e6 3.9e6 4.2e6]; 
ab=(O. 15 0.211 0.228 0.256 0.331 0.429 0.636 0.9197 1.22 1.200 1.53 1.841; 
fb2=[0.65e6 0.70e6 0.75e6 0.80e6 0.85e6 0.90e6 0.95e6 l.Oe6 1.05e6 l.lOe6 1.15e6 
1.20e6]; 
ab2=[0.0123 0.0101 0.00943 0.0133 0.0260 0.0103 0.00963 0.0128 0.00327 0.00508 
0.00884 0.006961; 
fb3=[3.00e6 3.25e6 3.50e6 3.75e6 3.80e6 3.85e6 3.90e6 3.95e6]; 
ab3=[0.1714 0.2607 0.3502 1.402 1.6517 2.1846 2.6537 2.90891; 
fb4=[4.604.65 4.704.75 4.804.85 4.904.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 
5.45 5.50 5.55 5.60 5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.006.05 6.10 6.15 6.201; 
fb4=fIb4* l.Oe6; 
ab4=[4.56 4.45 4.81 4.78 4.68 4.76 4.68 4.15 3.87 3.35 3.10 2.84 2.67 2.45 2.42 2.33 
2.26 2.24 2.202.16 2.202.33 2.41 2.54 2.74 2.94 3.21 3.51 4.05 4.56 4.99 5.00 5.201; 
f%5=[6.50 6.55 6.60 6.65 6.70 6.75 6.80 6.85 6.90 6.95 7.00 7.05 7.10 7.15 7.20 7.25 7.30 
7.35 7.40 7.45 7.50 7.55 7.60 7.65 7.70 7.75 7.80 7.85 7.90 7.95 8.001; 
fbS=fb5* l.Oe6; 
ab5=[5.002 4.969 4.933 4.986 5.037 5.096 4.956 4.856 4.834 4.715 4.601 4.503 4.326 
4.239 3.714 3.674 3.404 3.444 3.175 3.355 3.334 3.346 3.278 3.333 3.484 3.593 3.903 
4.119 4.648 5.25 1 5.3381; 
%fb6=[4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 
4.90 4.95 5.001; 
%fb6=fb6* 1 .Oe6; 
%ab6=[2.899 2.994 3.096 3.058 3.029 3.051 3.061 3.222 3.301 3.253 3.328 3.311 3.278 
3.452 3.457 3.409 3.465 3.427 3.3711; 
fb7=[3.50 3.55 3.60 3.65 3.75 3.803.85 3.90 3.95 4.004.05 43104.15 4.204.25 4.30 
4.35 4.40 4.45 4.501; 
fb7=fb7*1.0e6; 
ab7=[0.4217 0.5237 0.6217 0.7975 1.337 1.542 1.948 2.389 3.085 3.918 4.075 4.168 
4.478 4.398 4.225 4.418 4.566 4.301 4.478 4.6561; 

%Plot Results 
%loglog(fp5,asp5,‘ro’) 
%hold on 
loglog(fl ,as 1 ,‘b+‘) 
hold on 
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loglog(f2,as2,‘g+‘) 
hold on 
%loglog(f5r,as5r,‘r-‘) 
%hold on 
loglog(f5,as5,‘b+‘) 
hold on 
%loglog(f7,as7,‘w+‘) 
%hold on 
%loglog(flO,as 1 O,‘y+‘) 
%hold on 
loglog(ff,af,‘r-‘) 
hold on 
%loglog(fb,ab,‘g*‘) 
%hold on 
%loglog(fb2,ab2,‘g*‘) 
%hold on 
loglog(fb3,ab3,‘g*‘) 
hold on 
loglog(fb4,ab4,‘g*‘) 
hold on 
loglog(fb5,ab5,‘g*‘) 
hold on 
%loglog(fb6,ab6,‘g*‘) 
hold on 
loglog(fb7,ab7,‘ro1) 
hold on 
axis([l.Oe5 2.0e7 l.Oe-3 l.Oel]) 
title(‘Attenuation Results--5% polystyrene in 2” cell ‘) 
xlabel(‘Frequency (Hz)‘) 
ylabel(‘Attenuation (Npkm)‘) 
%loglog(fl Or,asl Or,‘ro’) 
hold on 

************************E~ OF STmm5.M **************************** 

%Program to calculate the mean and standard deviation of 
%the size measurements made on bubbles(getierated both by 
Ohaerator stone and electrolysis)using the video imaging systems. 
%These measurements are then used to calculate a size distribution. 
% Program is called ” bub1size.m” 

%Enter the aerator bubble measurements as arrays (bubble stream data) 
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daers~=[179189171183154156150157558558550552414427410419452454 
45144122822822122425272625196201183190588603580584134141137 
125213213210216199204194196]; 
maerstrm=mean(daerstnn); 
sigaerstrm=std(daerstrm,l); 

%data for aerator bubbles mixed 
daermix=[378381373 37551535045 140147138150162168160163 175 173 174 
180204199 192201166 169149161171161159168 164156 155 59 171 164 166166 
106 113 101102 164166 1601571; 
maermix-mean(daermix) 
sigaermix=std(daermix, 1) 

%Enter the electrolysis bubble measurements as arrays (bubble stream data) 
deles~=[54585252605863633439403636343534343636~401719212356 
5658503641363828323229494752485652535345454749495252496467 
686667717066263032325460555734363935]; 
melestrm=mean(delestrm); 
sigelestrm=std(delestnn, 1); 
%Data for electrolysis mixed in the cell 
delemix=[32303333858586893230383383838882414143432824272738 
3840406868656224262826434548469490979064646764454747473236 
3533535150515653515226262424494947491201181211184343444236 
3440357375707166717468383636337168687136343741616161626165 
636630303129302627297781797910910310910561576157107111107 
107575761612026242487858887404041395757555232323634464850 
4469656970262427254646464628303132535357524440434471736970 
8789909355554752464240374844484461615959403841383434383634 
34 33 33 75 73 67 731; 
melemix=mean(delemix) 
sigelemix=std(delemix, 1) 

%delemix2=[ 6161616261656366303031293026272977817979109103109 
10561576157107111107107575761612026242487858887404041395757 
5552323236344648504469656970262427254646464628303132535357 
5244404344717369708789909355554752464240374844484461615959 
403841383434383634343333757367731; 
%melemix2=mean(delemix2) 
%sigelemix2=std(delemix2,1) 

OhCalculate Bubble Size distribution 
%Set up “bins” s u c h that all bubbles in a bin are within 10 micron of bin diameter 
rad=[O 10 20 30 40 50 60 70 80 901; 
nrad=[O 0.1198 0.4101 0.2581 0.1429 0.04608 0.02304 0 0 0 1; 
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OhPlot results 
plot(rad, nrad,‘-.‘) 
ylabel(‘number fraction of bubbles’) 
xlabel(‘radius (micron)‘) 
axis([O 100 0 0.51) 

************************* Em OF BmLSEE.M *************************** 
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The attenuation data presented in this study are obtained using a number of 

different combinations of transducers, mixing vessels, data acquisition methods, and 

slurry types. It is not obvious, upon examination of a given set of attenuation data, that it 

may have been collected from a slurry placed in more than one vessel (different acoustic 

v pathlengths) and interrogated by more than one set of transducers. Therefore, a coding 

system is established to facilitate the acquisition of this information for every 

experimentally obtained set of data in this work. Each experimental figure has an 

experimental parameter number at the end of the figure caption. The experimental code 

has the following format: 

All codes begin with the letter “E” (for Experimental Parameter Series) followed by four 

digits, shown above by the Roman numerals I through IV. Each Roman numeral refers to 

an experimental set up parameter category shown in Tables Dl to D4.. Each category in 

Tables Dl through D4 has all the combinations of that parameter used in this study 

marked by a specific Arabic numeral. Thus the sequence of Arabic numerals following 

the “E” in the experimental code gives the pertinent information about the mixing vessels, 

transducers, etc. employed in obtaining that data set. 
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Category1 ---em------ Transducer Combinations 

1 ---- 0.5 MHZ, 1.0 MHz, 2.25 MHz, 5.0 MHz, 7.5 MHz, and 10.0 MHz 

2 ----- 1.0 MHz, 2.25 MHz, 5.0 MHz, 7.5 MHz, and 10.0 MHz 

3 ----- 1 .O MHz, 2.25 MHz, 5.0 MHz 

4 ----- 1.0 MHz, 2.25 MHz 

5 ----- 1.0 MHz, 2.25 MHz, 5.0 MHz, 7.5 MHz 

6 ----- 2.25 MHz, 5.0 MHz 

‘able D. 1: Transducer combinations employed to obtain attenuation data in 
the various slurries investigated in this study. 

II Category ----------- Experimental Method Combinations 
1 ----- Toneburst Method 
2 ----- Pulse/FFT Method 
3 ----- Both Techniques 

Table D.2: Experimental method combinations employed to obtain 
attenuation data in the various slurries investigated in this 
study. 

Category III ----------- Mixing Vessel/Test Cell 

Combinations 

1 ----- %” (1.27 cm) Plexiglas Test Cell 

2 ----- 1” (2.54 cm) Plexiglas Test Cell 

3 ----- 2” (5.08 cm) Plexiglas Test Cell 

4 ----- 4” (10.2 cm) Plexiglas Test Cell 

5 ----- %” and 1” Plexiglas Test Cells 

I I 
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1 

6 ---- 1” and 2” Plexiglas Test Cells 

7 -w--w %I”, l”, and 2” Plexiglas Test Cells 

8 ----- %” and 4” Plexiglas Test Cells 

9 ----- 4” and 1” Plexiglas Test Cells 

0 -_--- 1.6 L PVC Mixing Vessel 

Table D.3: Experimental mixing vessel/test cell combinations employed 
J 

to obtain attenuation data in the various slurries investigated in 
this study. 

Category IV ----------- Slurries Investigated 
1 --e-v Soda-Lime Glass Beads (small beads) in Water 
2 ---mm Potter’s Beads in Glycerin/Water 
3 --m-w Polystyrene Beads in Water 

Table D.4: Various slurries investigated in this study. 

An example of the interpretation of this coding system could be in the case shown 

in Figure 4.2, where we have a set of data labeled as E2363. This code implies the 

Experimental set up where the 1.0, 2.25, 5.0, 7.5, and 10.0 MHz transducers are used - 

(Table D. 1, item #2) in both the Toneburst and Pulse/FFT techniques (Table D.2, item 

#3) to obtain attenuation data in the 1” and 2” Plexiglas test cells (Table D.3, item #6) for 

a slurry of polystyrene beads in water (Table D.4, item #3). This coding system can be 

. used to determine the experimental parameters relevant to each data set shown in this 

work. 
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Appendix E: Discussion of Transducer Bandwidth 

A parameter which is often discussed in reference to a given ultrasonic transducer 

is the transducer bandwidth. The bandwidth is a term which describes the frequency range 

over which a given transducer will function effectively. It is usually referred to as the “- 6 

dB Bandwidth” and is described in terms of a percentage of the “peak frequency” of the 

transducer. The peak frequency is the frequency at which the FFT frequency spectrum of 

a received pulse (transducer response) displays a maximum. A signal which -6 dB from 

the peak frequency signal has one half of the peak kequency amplitude. As the transducer 

response is usually a bell shaped curve, there will be two frequencies which are -6 dB 

from the peak frequency. One frequency is greater than the center frequency, and one is 

less than the center frequency. The -6 dB bandwidth is the difference between those two 

frequencies divided by the center frequency, times 100 %. That is 

- 6 dB Bandwidth = 
.f##&3 - .&dB x looo/ 

fc 
0, (E.1) 

where f +61B and f-6dB are the frequencies at -6 dB from the center frequency which - 

are greater and less than the center frequency, respectively, and fc is the transducer 

center frequency. For example, a 0.50 MHz transducer with a reported center frequency 

of 0.457 MHz and -6 dB frequencies of 0.61 MHz and 0.305 MHz will have a bandwidth 

of 66.7 %. 
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Notation 

Latin Characters: 

A 
a 
A 
B 
C 

2 V 

: 

; 
g 
h 

i 

j 
k 
k 
N 
n 
P 

4 
R 
r 
r 
S 
T 
t 
u,u 
V 
V 

V 

X 

XYY 

Vector velocity potential, m’/s 
General vector quantity 
Magnitude or scattering coefficient 
Magnitude or scattering coefficient 
Magnitude or scattering coefficient 
Heat capacity at constant pressure, J/gK 
Heat capacity at constant volume, J/gK 
Sound speed, m/s 
Deviator-k stress, Pa or path length, cm 
Base of natural logarithm = 2,718 
Transducer frequency, MHz 
Indicator function 
Spherical Hankel Function 

J-l - 

J-1 or Spherical Bessel Function of First Kind 
Wavenumber, cm-’ 
Vector wavenumber, cm-’ 
Total number of particles or bubbles 

Number of bubbles per unit volume 
Probability Density or Legendre Polynomial 
Heat flux, J/ m’s 
Bubble radius, cm 
Position vector, cm, m 
Bubble or particle radius or position, cm 
Structure factor 
Temperature, K 
Time, s 
Velocity, m/s 
Control volume, cm3, m3s 
Velocity, m/s 
Attenuation, cm“ 
Position coordinate, cm, m 
Position coordinate, cm, m 
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Greek Characters: 

a. = 

P = 

Y = 
= 

; = 

= 
; = 

h = 

P = 

P = 

7T = 

a = 
= 

; = 

0 = 
0 = 
'I: = 

Attenuation coefficient, cm-’ 
Bubble volume fraction or thermal expansion coefficient, l/K 
Ratio of specific heats = C’I Cv 
Error parameter 
Deviatoric stress, Pa or damping coefficient or Dirac delta 
or Kronecker delta 
Parameter 
Radial angle, rad 
Parameter or Lamb constant 
Viscosity, kg/ms or Lamb constant 
Density, g/cm3 
3.14159 
Scalar velocity potential, m2/s 
Azimuthal angle, rad 
Solids volume fraction or scalar velocity potential, m2/s 
Angular Frequency, MHz 
Stress tensor, Pa or surface tension, dyn/cm 
Thermal Conductivity, J/Kcms 

Superscripts and Subscripts: 

C = Compressional 
H20 = Water phase 
iJ = Indicial subscripts 
e = From the energy equation 

eff = Effective value 
EM = Effective Medium 
G = Gas phase 
L = Liquid phase 
meas = Measured value 
P = Particle 
s = solid or shear 
t = thermal 
true = True value 
slurs = slurry 
solid = solid phase 
0 = Initial or equilibrium value 
* = Superscript implying dimensionless quantity 

= Superscript implying quantity evaluated inside a particle. 
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