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1 Executive Summary

The design of groundwater remediation pump-and-treat well networks under
aquifer parameter measurement uncertainty can be addressed using an optimal-
design strategy based upon the concept of robust optimization. The robust-
optimization approach allows for the admission of design alternatives that do
not satisfy all design constraints. However in the selection process the algorithm
penalizes such selections based upon the number of constraints violated. The
result is a design which balances the importance of reliability with overall project
cost.
The robust-optimization method has been applied to the problem of groundwater-

plume containment and risk-based groundwater remediation design. Designs
dedicated to groundwater-plume containment assure that the contaminant plume
will not extend beyond a prespecified perimeter. Inwardly directed groundwa-
ter velocity must be achieved along this perimeter. The outer-approximation
optimization technique in combination with a groundwater flow model (PTC)
is used to solve this optimal-design problem.
The risk-based groundwater-remediation design approach seeks to achieve

prespecified water-quality goals at specified locations at specified times using,
in this case, pump-and-treat technology. The modified tunneling optimization
method in combination with a groundwater flow and transport model (PTC) is
used to solve this optimal-design problem.
In a third design approach both the plume containment and the risk-based

approaches are combined into one remediation strategy. The combined approach
has also been addressed.
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2 Research Objectives

The goal of the proposed research was to formally accommodate parameter un-
certainty in the design and decision-making process associated with groundwater
remediation. The individual objectives were:

1. develop the mathematical representation of a groundwater remediation
optimization algorithm that includes uncertainty in hydraulic conductivity
using the robust optimization approach;

2. prepare a FORTRAN computer program that will solve the equations
obtained from objective 1;

3. test and verify the resulting FORTRAN program to assure that the for-
mulation provided in 1 is being solved correctly;

4. employ the resulting software to a hypothetical problem;

5. evaluate the effectiveness of the resulting algorithm on solving the hypo-
thetical problem.

3 Methods and Results

3.1 The Methodology

Many optimization models approach the problem of incorporating uncertainty
into the model by using stochastic methods (Wagner [13],[14], Watkins [15],[16]).
When this is done, all possible uncertain values are assumed to have equal
probability of occurrence. This method often results in over-designed systems.
We applied a different optimization technique to incorporate uncertainty

in our model. The method used in this work is called robust optimization
(Mulvey [11]). Robust optimization is a multi-scenario approach to handling
uncertainty in the optimization design. In this approach, each of the scenarios
represents a possible realization of the uncertain parameter. In the groundwater
remediation problem, we examine the uncertainty in the hydraulic conductivity.
Each scenario represents one possible hydraulic conductivity field.
Once the possible realizations have been determined, they are used to obtain

an optimal remediation design. There are a number of different interpretations
of the robust optimization technique. In our setup, the objective function con-
sists of two nested minimization problems. First we assume that each of the
chosen scenarios represents the true hydraulic-conductivity field. Assuming that
scenario x is the true scenario, we hold that the constraint values for scenario
x must be satisfied, while violations of the constraints for all other scenarios
will result in the amplification of the objective function. This amplification is
represented in the objective function as a penalty cost associated with the viola-
tion of the constraint. The penalty cost in the robust optimization problem has
three components. The first is the constraint violation. The second is the total
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weight, which can be thought of as a risk aversion term. The third component
is the weight associated with the frequency of occurrence of the scenario. For
example, if the scenario has a low probability of occurrence, then in the event
that the constraint is violated for that particular scenario, the penalty cost will
be low due to the low probability of occurrence. This third component of the
penalty term prevents the optimal design from being biased towards improbable
scenarios. Assuming that each of the scenarios is the true scenario, the optimal
solution is determined. This final solution is then the minimum over all of the
solutions determined for each randomly selected scenario.
In earlier formulations using the robust-optimization formulation to address

the contaminated-groundwater containment problem, the values of the hydraulic
conductivity fields were chosen randomly from a given probability density func-
tion (pdf) (Watkins[15],[16], Karatzas[8]). The scenario weight must be carefully
considered when random sampling is done. If equal weights are assigned to each
scenario, the advantages of the robust optimization are not maximized.
We have addressed the problems associated with scenario weighting via a new

method of sampling that ensures that each of the scenarios has equal weight.
This method is derived from the Latin hypercube method of sampling. In
this approach, the probability-density function that describes the uncertainty
in hydraulic conductivity is separated into equal areas. In the Latin hypercube
method of sampling a sample is selected randomly from each of the separate
areas (Figure 1).
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Figure 1: Illustration of concept of equal-area sampling using a log-normal
distribution of the hydraulic-conductivity field.

4



When equal-area sampling is used to determine the samples that are used
to represent the uncertainty in the hydraulic conductivity, each of the scenarios
analyzed in the robust optimization problem has an equal probability of oc-
currence. This simplifies the robust optimization problem because the weight
associated with each scenario is equal. For simplicity, we set this weight to be
equal to one over the total number of scenarios analyzed.
Equal area sampling also allows the modeler to observe convergence of the

optimal solution to a reliable solution. This is done by observing the change
in the optimal solution as the number of scenarios examined in the robust-
optimization problem increases. When the change in the optimal solution is
small, a reliable representative optimization solution is achieved. It is observed
that as the number of scenarios increases, the value of the optimal solution to
the gradient constraint problem increases monotonically.
Historically a lognormal distribution curve has been used to describe the

uncertainty in the hydraulic conductivity (Law [10], Csallany and Walton [3],
Freeze and Cherry [5]). When examining a histogram of hydraulic conductivity
data, the lognormal distribution does conform to the data. Hydraulic conduc-
tivity is never negative and the lognormal distribution has positive probability
values only for positive values, so the lognormal distribution is a reasonable
distribution for describing the uncertainty in the hydraulic conductivity.
Because the lognormal distribution has positive probabilities for all positive

values of hydraulic conductivity, one may truncate the lognormal distribution
function to attain a limited range of positive hydraulic conductivity values, and
hence achieve convergence of the optimal remediation design with an increase in
the number of scenarios examined. When the distribution is truncated at 95%
and 65% two different optimal solutions are converged upon (Figure 2). When
the distribution is truncated at 95% the value of the optimal solution is greater
than when the distribution is truncated at 65%. This implies that the optimal
solution converged upon is highly dependent upon the amount of truncation of
the lognormal distribution. Because the amount of truncation is subjective, we
examined an alternative to truncation of the lognormal distribution function by
examining a pdf that can have a form similar to the lognormal distribution, but
has positive probabilities for a limited range of values.

The beta distribution function has many different forms, the J form, the U
form and the normal form, which can take a shape very similar to the appearance
of a lognormal distribution (see Figure 2). The common attractive characteristic
of all of these forms, however, is that positive probability values only occur for a
limited range of hydraulic conductivity values. The modeler must specify what
range of values the beta distribution will cover, and techniques can be used to
fit a beta distribution to hydraulic conductivity data.
The ability of the beta distribution to accurately represent hydraulic-conductivity

values observed in the field was tested. Data from the Dakota Sandstone was
successfully fit with the beta distribution (see Figure 4).
Using a beta distribution to describe the uncertainty in the hydraulic con-

ductivity, it is possible to observe convergence of the optimal remediation design

5



1 2
0

20

40

60

1 2
0

20

40

60

1 2
0

20

40

60

Pu
m

pi
ng

 r
at

e 
(m

3 /h
r)

wells

100% Lognormal (EA) 95% Lognormal (EA) 65% Lognormal (EA)

Cost: 

$3,103,433

Cost: 

$1,394834

Cost: 

$423,590

Figure 2: Cost estimates obtained using the entire lognormal distribution, the
distribution truncated at 95% and the distribution truncated at 65%.

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

Lognormal Distribution

ββββ-Distribution

%
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Dakota Sandstone Data
Raw Data Transformed Data

RMS: Logn = 0.1839
Beta = 0.0531

RMS: Normal  = 0.0658
Beta = 0.0579

lognormal fit *

beta fit *

normal fit *

beta fit *

Figure 4: A comparison of the beta and lognormal distribution fits to the Dakota
Sandstone data. RMS stands for root-mean-square fit error between the his-
togram and the continuous distribution.

with an increase in the number of scenarios examined in the robust optimization
problem. Because the data determines the range of values covered by the beta
distribution, this optimal solution is not dependent upon the discretion of the
modeler. This solution is totally objective.
It is observed that the optimal remediation design is converged upon using

equal area sampling on the beta distribution in approximately 30 scenarios.
If random sampling (not Latin-hypercube sampling) is used, one cannot know
how many scenarios must be examined to attain a reliable optimal solution.
The value of the optimal solution will sporadically increase as the number of
scenarios examined increases. Convergence to an optimal solution cannot be
assured when random sampling of a pdf is performed, and so a large number of
scenarios must be employed to ensure that a reliable optimal solution has been
attained using robust optimization. For this reason we prefer to use equal area
sampling.
Included in the present work is an analysis of the spatial variability of the

hydraulic conductivity in the model. Superimposed on each of the scenarios
are 30 randomly correlated spatial variability matrices. The number of sce-
narios necessary to achieve a convergent solution was analyzed to be x. The
spatial variability matrices were then superimposed, and the robust optimiza-
tion problem was solved for x times 15 scenarios. The optimal solution does not
vary significantly from the solution attained without the spatial variability. The
value of the new optimal solution is slightly higher, but this is expected because
the spatial variable term will increase the hydraulic conductivity in some loca-
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tions, thereby increasing the contributions to the penalty term and the required
pumping. Convergence occurs when the same number of scenarios is examined
in the non-spatially variable case. This suggests that the convergence exercise
should be completed using the simple case that examines the design uncertainty
only. Once a solution is converged upon, the spatial variability should then
be superimposed upon the scenarios required for convergence so that a more
realistic model can be used in the final remediation design.

3.2 The Mathematics

The general form of an optimization problem consists of a set of equations that
must be solved simultaneously. For each system, there is an objective that must
be met. Further, there are constraints placed upon the system. Let us first
formulate the optimization problem that will result in a least cost pump-and-
treat groundwater remediation design that is not subject to uncertainty in the
hydraulic conductivity. This design will have constraints such that the hydraulic
gradients will contain a contaminated plume. The formulation of this problem
is as follows:

Objective : min
X
i

kiqi (1)

Subject to : g −
X
i

(h1i − h2i ) ≤ 0

0 ≤ qi ≤ max(q)
where
ki ≡ cost per unit pumping at well i
qi ≡pumping rate at well i
g ≡ required gradient necessary for containment
h1i − h2i ≡ the gradient due to pumping at well i
max(q) ≡ maximum allowable pumping.

As noted in § 3.1, robust optimization is a method of optimization that
incorporates the uncertainty of the hydraulic conductivity into the pump-and-
treat optimization problem. It does this by examining multiple realizations of
the hydraulic conductivity simultaneously. In our interpretation of robust opti-
mization, two nested minimizations must be completed. The first minimization
requires determining a least-cost remediation design assuming that one of the
realizations is the true hydraulic conductivity field. All other realizations in this
minimization problem represent the uncertainty in the hydraulic conductivity.
For each of the true realizations, the gradient constraints must be satisfied.
Violations of the constraints for the non-true realizations may occur, however,
when a violation for one of these realizations does occur, a penalty cost is added
to the cost of pumping. Once a least cost remediation design is determined for
each realization representing the true realization, the designs with the minimum

8



cost is said to be the solution to the robust optimization problem. The robust-
optimization formulation for the gradient-constrained groundwater remediation
problem is as follows:

Objective : min
S∗∈Ω

minqi X
i

kiqi + ω
1

|N |
X

max(0, ξS
S∈Ω,S 6=S∗

)

 (2)

subject to : g −
X
i

(h1i − h2i ) ≤ 0 for S∗

0 ≤ qi ≤ max(q)∀S and S∗

where
Ω ≡ the set of all possible scenarios
S∗ ≡ the true scenario.
S ≡ the scenarios that are not considered to be the true scenario.
ω ≡ total weight for the penalty term.
N ≡the total number of scenarios.
1
|N| ≡ individual weight of each scenario.
ξS ≡the constraint violation for the scenario (S 6= S∗)

The values of the hydraulic conductivity for each scenario are determined by
using equal area sampling of the probability density function that represents the
uncertainty in the hydraulic conductivity as described in § 3.1. Consider first
the equation that describes the lognormal distribution function (Gelhar[6]):

P (x) =
1

σx
√
2π
exp

µ−(ln(x)− µ)2
2µ2

¶
where
µ ≡ mean of ln(x)
σ ≡ standard deviation of ln(x).
The equal-area sample values, xi, for a lognormal distribution curve can be

determined by solving the following equation for xi:

i

n+ 1
=

xiZ
0

P (x)dx

where
P (x) ≡ the lognormal distribution function.
n ≡the total number of equal-area samples desired.
xi ≡the ith sample.

The solutions for the equal area samples for the lognormal distribution func-
tion are given by:
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xi = exp

µ√
2σ inver f

µ
2i

n
− 1
¶
+ µ

¶
If the truncated lognormal distribution is used the equal area sample values

are expressed as follows:

xi = exp

µ√
2σ inver f

µ
2iτ

n
− 1
¶
+ µ

¶
where
τ ≡ the amount of truncation expressed as a decimal.

The functional form of the beta distribution is:

P (y) =
1

β(p, q)

(y − a)p−1(b− y)q−1
(b− 1)p+q−1

The function β(p, q) is the beta function. The values a and b define the lower
and upper bounds of the range of possible hydraulic conductivities, and p and
q are parameters that describe the shape of the beta function. (Johnson [7]).
In this analysis the beta distribution that best approximates the lognormal

distribution function is used. The values of the four parameters were determined
that best represented the lognormal distribution. First the range of hydraulic
conductivity values is set between zero and one, so a = 0 and b = 1. Based upon
the shape of the lognormal distribution curve, this is not a bad approximation
for this problem. In a non-theoretical problem, the true data would determine
the range of values chosen. As mentioned earlier, this was indeed considered.
Second, the highest frequency in the lognormal distribution and the beta dis-

tribution are required to occur at the same hydraulic conductivity value. This
ensures that the beta distribution has a shape similar to a lognormal distribu-
tion. The final parameter is determined by conducting a linear search such that
the difference between the theoretical lognormal distribution curve and the beta
distribution curve is minimized.
The beta distribution function is not integrable, so an analytic expression for

the equal area points cannot be derived for this distribution. The area under the
curve from 0 to a given hydraulic conductivity value is determined by examining
the incomplete beta function:

Iyi(p, q) =
1

β(p, q)

yiZ
0

(y − a)p−1(b− y)q−1
(b− a)p+q−1 dy

The incomplete beta function has a series expansion and so the value of
yi can be numerically determined by evaluating a continued fraction routine
using a modified version of Lentz’s method (Press [12]). Using these numerical
approximations it is possible to conduct a linear search for each of the equal
area samples.
Once the equal-area sample values have been determined, the scenarios are

defined assuming perfectly homogeneous, but uncertain aquifer properties, each
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with the different sample values determined. Spatial variability (mentioned in
§ 3.1) is introduced into the problem by superimposing 15 spatially correlated
randomly distributed fields upon each of the scenario values. These fields were
generated using the subroutine SGSIM that is part of the GSLIB package de-
veloped by the Stanford Center for Reservoir Forecasting (Deutsch [4]). The
extension of the approach to correlated random hydraulic conductivity fields is
theoretically possible, but the required computational effort is such that it was
not considered within the scope of this project.
Hydraulic head response is linear with respect to pumping. For this reason

the gradient constraints are also linear. In the example problem considered in
this work, the pumping wells used for containment are located in the interior of
the desired capture zone. Each of the gradient-constraint surfaces is influenced
in a similar manner by pumping at either of the wells because they are in the
interior of the capture zone. The contributions of the penalty term to the
objective function for this robust optimization problem are such that the global
solution to this optimization problem occurs on the boundary of the feasible
region. For this reason it is possible to use the method of outer approximation
to solve this optimization problem (Karatzas [9]).
The objective function cannot be expressed analytically as a function of

pumping rates from each of the wells. Rather, for each combination of pumping,
the objective function is determined numerically by solving the finite-element
groundwater flow model known as the Princeton Transport Code (PTC)(Babu
[1]). The groundwater flow equation is as follows:

∇ ·K ·∇h(x, t)− S ∂h(x, t)
∂t

−Qi = 0 (3)

where
S ≡specific storage coefficient.
h ≡hydraulic head.
K ≡ the hydraulic conductivity of the aquifer.
Qi ≡source/sink flow from well i

3.3 Sample Problem for the Gradient-constrained Case

For this investigation a groundwater flow model consisting of a 30 nodes by 30
nodes equally spaced mesh is employed. The finite-element model represents an
area that is 870 meters by 870 meters (see Figure 5). The boundary conditions
on this model are such that the there is no groundwater flow out of the northern
and southern boundaries of this model and there are constant head conditions
of 25 and 5 meters on the western and eastern boundaries respectively. These
conditions create an ambient uniform hydraulic gradient across the model. This
is a single layer model with a uniform thickness of 30 meters. The two possible
well locations are noted by the asterisks on Figure 5. These locations are interior
to the desired capture zone. The capture zone is realized by placing gradient
constraints on pairs of nodes located along the line defining the maximum extent

11



of the desired capture zone. The gradient constraints are such that the flow of
groundwater must be towards the wells after three years of pumping.

     
 

 

 

 

 

no flow

no flow

h 
= 

25
m

h 
= 

5m

Gradient constraint locations

870m x 870m K = 0.01 m/hr
30 x 30 nodes b = 30m 

Well 1
Well 2

Plume

Figure 5: Definition sketch for the example containment model. The well lo-
cations are represented by the asterisks. The aquifer thickness is defined as
b=30m.

The hydraulic conductivity is determined for each scenario by either sam-
pling a representative lognormal distribution, a truncated lognormal distribution
function, or a beta-distribution function. The lognormal distribution function
used in this study is generated by setting the mean, µ, equal to 0.01 meters per
hour and a standard deviation of the related normal distribution, σ, equal to
1.0 meters per hour.
As was the case earlier, the lognormal distribution function is truncated at

the 95th percentile and at the 65th percentile (see Figure 1). Analyses are also
conducted on these truncated distributions.
The beta distribution that best fits the representative lognormal distribution

is one where the beta distribution parameters are given by a=0, b=1, p=1.299
and q=81.037.
The spatial distribution matrices that are used in this model are generated,

as noted earlier, using the SGSIM subroutine of the GSLIB package. The ma-
trices have a correlation length of 120 meters, which equates with a correlation
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over a maximum of four nodes in the model. The lognormal distribution for the
spatial distribution is one tenth of the distribution used for the design uncer-
tainty.

3.4 Extension to the Concentration-constrained Case

In the preceding, we considered the case of a gradient-constrained problem.
While the concentration, or risk-based constrained problem is conceptually a
natural extension of the gradient-constrained problem, from an operations-
research perspective it is very different. The mathematical statement of the
risk-based constrained problems is

min
X
i

ciqi + ω
1

|N |
X
S∈Ω

max (0, ξS) (4)

subject to g −
X
i

¡
h1i − h2i

¢ ≤ 0
c̄− cj ≤ 0
0 ≤ qi ≤ max q ∀S

where the variables are as defined in equation 2 but for cj , which is the con-
centration and c̄ which is the target concentration. Note that in equation 4
the gradient-constrained problem is a subset of the more general problem. The
concentration-constrained case includes the gradient-constrained case.
The equation needed, in addition to equation 3, to represent the concentra-

tion constraints in term of the decision variable qi is the groundwater-transport
equation which is written

∂c (x, t)

∂t
+∇· (vc) (x, t)−∇ ·D ·∇c (x, t)−Qic̄i = 0 (5)

where
v(x, t) is the groundwater velocity
D is the dispersion coefficient and
c (x, t) is the concentration of the designated species.
Equation 5 can be extended to include chemical reactions and retardation

without substantially changing the general concepts presented herein. The ve-
locity appearing in equation 5 is obtained using the solution from equation 3
via Darcy’s Law

v (x,t) = −K ·∇h (x, t)
The methodology needed to solve the resulting optimization problem is much

more complex than that required to solve equation 1. A new formulation based
upon the ‘tunneling method’ was developed for this task. The tunneling ap-
proach is especially effective when dealing with problems exhibiting multiple
minima on the interior of an otherwise differentiable objective function surface.
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3.5 Sample Problem for the Concentration-constrained Case

The example problem is presented in Figure 6. A contaminant source is located
to the left of the figure in a left-to-right flowing field. Two pumping wells and
one injection well are located as indicated along with three observation wells
where the specified-concentration constraint of 0.005 ppb must be satisfied.

.05.1.2.5 .005

Pumping Well
Observation Well

Injection Well

Figure 6: Definition figure for the concentration-constrained sample problem .

The concentration-constrained problem generates an objective-function sur-
face with multiple minima as shown in Figure 7. The tunneling method, as
modified, provides an effective tool to solve this optimization problem. Gener-
ally the objective-function surface is not known, but it was computed herein for
illustration in the case of this simple example problem.

4 Results

The robust optimization problem is solved for incrementally larger numbers of
samples determined through equal-area sampling. Initially no spatial distribu-
tion is considered. Each distribution is examined independently for convergence
to an optimal solution with increasing numbers of samples. Random sampling of
the lognormal distribution is also examined. And finally, the spatial distribution
is added to the problem to examine the affects it will have on convergence.
The number of scenarios examined is plotted versus the solution to the robust

optimization problem. When random sampling is employed, the solutions to the
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Figure 7: Objective function obtained for the concentration-constrained prob-
lem.

robust-optimization problem do not appear to converge to a stable optimum.
While there is an increase in the value of the optimal solution as the number
of scenarios examined increases, the increases occur as sporadic jumps, and
convergence cannot be observed by using the random method of sampling. To
ensure equal probability, however, those values that delineate the area under the
pdf are used as our sample values. We call this method of sampling ‘equal-area
sampling.’
When equal-area sampling is used, the values of the solutions to the robust

optimization problem steadily increase as the number of scenarios examined in-
creases. As the number of scenarios increases, the increase in the value of the
solutions to the robust optimization problem can be examined, and convergence
can be observed. Equal area sampling is a reliable way to determine the number
of representative samples one needs in a robust optimization problem to deter-
mine a reliable optimal that is representative of the uncertainty in the hydraulic
conductivity.
Further observations, however, indicate that the type of distribution used

to describe the variability in the hydraulic conductivity plays an equal part in
determining a reliable optimal solution.
The solutions to the robust optimization problem using equal-area sampling

on the lognormal distribution curve do not converge to an optimal solution as
the number of samples increases (Figure 8). This is due to the influence of the
highest hydraulic conductivity value on the robust optimization problem. As
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the number of samples increases in equal-area sampling, the highest hydraulic-
conductivity value will increase without bound when a lognormal distribution
curve is used to represent the hydraulic-conductivity variability.
When the truncated lognormal distribution curve is used to represent the

hydraulic conductivity variability, convergence of the optimal solution does oc-
cur as an increasing number of samples is examined. The value to which the
robust optimization problem converges is dependent upon the chosen degree of
truncation. Determining the degree of truncation is not always clear. The trun-
cated lognormal distribution should only be used when the modeler is sure that
the truncation value is one where the sense of the uncertainty in the hydraulic
conductivity value is not lost.
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Figure 8: Rate of convergence of several approaches to solution of the gradient-
constrained problem.

Convergence is also observed using equal area sampling applied to the beta
distribution function. As noted in § 3.1 the advantage to using the beta distri-
bution function over the truncated lognormal distribution function is that the
range of hydraulic conductivity values spanned by the beta distribution func-
tion are determined by the variation in the hydraulic conductivity. The range
of values is not determined by the modeler, and manipulation of the optimal
solution is not an issue.
When the spatial variability is included, the value of the optimal solution

increases. This is expected. The introduction of spatial variability increases
slightly the highest hydraulic-conductivity value examined . This is reflected in
a slightly higher value for the optimal solution. The introduction of the spatial

16



variability, however, does not negatively affect the convergence to a reliable
optimal solution.
Because robust optimization is a multi-scenario approach, an effort has been

made to decrease the number of scenarios necessary to represent the uncertainty
in the hydraulic conductivity. Convergence of the robust optimization solution
with an increasing number of scenarios is observed when applying equal area
sampling to the truncated lognormal distribution and to the beta distribution.
Because the beta distribution is determined purely by the hydraulic-conductivity
distribution, this is the preferred distribution to use. Convergence is observed
after approximately thirty scenarios.
The results of the concentration-constrained example problem are shown in

Figure 9. The charts show the amount of pumping from the two wells (shown
in Figure 6) that is required to satisfy the concentration constraints. Note that
as the analyst demands that the solution satisfy more of the constraints (the
weights increase), the costs also increase.
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Weight indicates measure of risk aversion to system failure

Figure 9: Comparison of the costs obtained for the concentration-constrained
problem using different weighting coefficients ω that reflect the importance of
risk aversion to the analyst.

5 Relevance, Impact and Technology Transfer

5.1 Relevance

The above-described research can be used at once to minimize the costs of
groundwater remediation using pump-and-treat technologies. Not only can the
technology provide more cost-effective remedial designs, but also it can be used
to redesign existing pump-and-treat facilities to make them more cost effective
and less risky. The concepts and mathematical tools provided as a result of this
research can be readily extended to more complex groundwater remediation
systems. Reactive walls and biologically enhanced remediation systems can, for
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example, be addressed using the strategies developed in this work.

5.2 Impact

The impact of the technology developed during the course of this research is
twofold. Its utilization can result directly and immediately in a reduction in
cost of new and existing groundwater remediation facilities. Application of the
technology results in a reduction in cost that may be realized either via a savings
in fixed costs or a decrease in operation and maintenance costs or a decrease
in fines due to violations of government regulations because the uncertainty in
hydraulic conductivity was not considered in the model. In addition, the trade-
off between increased design reliability and increased cost is explicitly presented.
An example of this trade-off is presented in Figure 9. As the aversion to potential
system failure increases, so also do the costs.

5.3 Technology Transfer

The methodology generated via this research will be transferred using three
approaches;

1. the conceptualization, formulation, testing and evaluation of the method-
ology has been and continues to be presented via publication in conference
proceedings and professional journals, as well as in oral presentations at
universities, research centers and professional meetings;

2. the methodology is presented as one element of professional short courses
given by the principle investigators, and

3. the methodology is to be taught in graduate-level courses on optimal
groundwater remediation design given at the University of Vermont.

5.4 Project Productivity

All elements of the proposed research were complete successfully.

5.5 Personnel Supported

George F. Pinder - Faculty
George P. Karatzas - Research Faculty
Karen Ricciardi - Graduate Student

5.6 Publications

K.L. Ricciardi and George F. Pinder “Risk based groundwater remediation de-
sign using a tunneling optimization algorithm,” in Computational Methods in
Water| Resources, XIII, Calgary, Canada, 519-523, 2000
Two additional papers prepared for publication in peer-reviewed journals

are in the internal review process and another is in preparation.
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