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Abstract:

Improved risk characterization for stochastic biological effects of low doses of low-LET
radiation is important for protecting nuclear workers and the public from harm from radiation
exposure.  Here we present a Bayesian approach to characterize risks of stochastic effects from
low doses of low-LET radiation.  The stochastic effect considered is neoplastic transformation of
cells because it relates closely to cancer induction.  We have used a previously published model
for neoplastic transformation called NEOTRANS1.  It is based on two different cellular
sensitivity classes for asynchronous, exponentially growing populations (in vitro).  One
sensitivity class is the hypersensitive cell.  The other is the resistant cell.  NEOTRANS1 includes
effects of genomic damage accumulation, DNA repair during cell cycle arrest, and DNA
misrepair (non-lethal repair errors).  The model-associated differential equations are solved for
conditions of an in vitro irradiation at a fixed rate.  Previously published solutions apply only to
high dose rates and were incorrectly assumed to apply to only high-LET radiation.  Solutions
provided here apply to any fixed dose rate and to both high- and low-LET radiations.  Markov
Chain Monte Carlo methods are used to carry out the Bayesian inference of the low-dose risk for
neoplastic transformation of aneuploid C3H 10T1/2 cells for X-ray doses from 0 to 1000 mGy.
We have assumed that for this low dose range only the hypersensitive fraction of the cells are
affected.  Our results indicate that the initial slope of the risk vs. dose relationship for neoplastic
transformation is as follows: (1) directly proportional to the fraction, f1, of cells that are
hypersensitive; (2) directly proportional to the radiosensitivity of the genomic target; and
(3) inversely proportional to the rate at which hypersensitive cells with radiation-induced damage
are committed to undergo correct repair of genomic damage.  Further, our results indicate that
very fast molecular events are associated with the commitment of cells to the correct repair
pathway.  Results also indicate that commitment of cells to the misrepair pathway can occur with
a lower frequency relative to commitment to the correct repair pathway.  Our results are
consistent with the view that for very low doses, dose rate is not an important variable for
characterizing low-LET radiation risks so long as age-related changes in sensitivity do not occur
during irradiation.
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1.  INTRODUCTION

The NEOTRANS1 model (Fig. 1) previously published from our Institute (Scott, 1997)
uses a series of genomic instability states to characterize neoplastic transformation (in vitro)
induced by high linear-energy-transfer (LET) radiations.  The term genomic instability states
refer to any spontaneous or toxicant-induced instability in the genome, including any initial-
transient instability or persistent instability that may be passed to cell progeny.  In addition to a
stable genome, the NEOTRANS1 model also includes four types of genomic instability:
(1) Normal-minor instability (NMI) associated with normal cell function and normal genome
status; (2) Transient-minor instability (TMI) associated with toxicant-induced genomic damage
that is fully repairable (without any significant errors); (3) Transient-problematic instability
(TPI) associated with genomic damage that may be fully repairable but can be misrepaired; and
(4) Persistent-problematic instability (PPI) that arises from misrepair, is persistent, and can be
passed to progeny, increasing their potential for stochastic effects such as neoplastic
transformation.  Sensitivities of cells within asynchronous, exponentially growing populations
(in vitro) for neoplastic transformation vary and within the model are broadly categorized as
hypersensitive and resistant.  A stable genome was modeled only for resistant cells.

Figure 1: NEOTRANS1 model for neoplastic transformation of mammalian cells.  Arrows
indicate pathways for instability-state transitions.  Model parameters µ, η, and products αc when
multiplied by ∆t represent probabilities of transition between instability states when a small
exposure time increment ∆t is taken.
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The probability that a very small dose ∆D will cause a hypersensitive cell in NMIhs to
enter the more unstable state TPIhs during a very short time increment ∆t is given by
α1∆D=α1c∆t, where c is the absorbed dose rate.  Hypersensitive cells in state TPIhs can develop
PPI genomic instability (due to misrepair) during ∆t with conditional probability η1∆t.  The
conditional probability that a hypersensitive cell in state TPIhs is repaired to state NMIhs during
∆t is given by µ1∆t.  f1 is the fraction of hypersensitive cells with respect to neoplastic
transformation.  Accordingly, 1-f1 is the fraction of resistant cells.  The probability that a very
small dose ∆D will place a resistant cell in state STr into state TMIr is given by α2∆D.  The
corresponding conditional probability that a very small dose ∆D will place a resistant cell in state
TMIr into state TPIr is given by α3∆D.  The conditional probability that a resistant cell in state
TMIr will be repaired to the stable state STr during the interval ∆t is µ2∆t.  The corresponding
conditional probability that a resistant cell in state TPIr will be repaired to state TMIr is also µ2∆t.
The conditioning is based on the absence of competing risks or processes.

Progeny of cells in state PPIr are assumed to have a relatively high risk of undergoing
spontaneous neoplastic transformation with probability Ω during a fixed follow-up time.

As with the publication of the original paper on the NEOTRANS1 model (Scott, 1997),
results presented here relate to transformations per surviving cell (TF/SC).  Hypersensitive cells
develop radiation-induced TPI via a one-step, reversible process.  Mechanisms associated with
this process are not known.  Resistant cells develop TMI via a two-step, reversible process: the
induction of TMI in stable cells and the induction of TPI in cells that have TMI.  The reversible
process involves the correct repair of DNA damage.  However, misrepair of this damage for cells
with TPI can lead to PPI that can be passed to progenitor cells rendering them susceptible to
spontaneous neoplastic transformation.

NEOTRANS1 was developed with the assumption that cell killing and neoplastic
transformation were statistically independent effects for low-to-moderate doses of high-LET
radiation (Scott, 1997).  This assumption is supported by experimental data for high-LET
radiation (Brenner et al., 1996).  Whether this is also true for low-LET radiation was unclear at
that time.  Thus, it was initially concluded that NEOTRANS1 might apply only to high-LET
radiation.  Here we relax that assumption and demonstrate that NEOTRANS1 can also be applied
to low doses of low-LET radiation.  For the dose range of interest, 0 to 1000 mGy of X-rays, we
have assumed that only the hypersensitive cells are affected.  However, we provide analytical
solutions for both hypersensitive and resistant cells to allow for possible future application of the
solutions to moderate- and high-dose data.  Model parameter estimates presented here relate only
to hypersensitive cells.

2.  APPROACH

The differential equations associated with the model represent constant-coefficient
systems of ordinary differential equations.  Model equations were previously solved via the
Laplace Transform method but only for very high dose rates (Scott, 1997).  Here we present
solutions derived using the eigenvalue method that apply to any constant dose rate.  Because of
the complexity of the solutions, two covariates (dose and dose rate), and data limitations, use of
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standard nonlinear regression methods is problematic to obtain model parameters from
experimental data.  We have therefore considered a different approach.

The recent, widespread dissemination of faster computational equipment has facilitated
improved statistical treatment of complex problems such as finding parameters for complicated
models.  An approach that has greatly benefited from these advances is Bayesian inference
(Sivia, 1998; Skilling, 1989; Carlin and Louis, 1996; Miller and Inkret, 1996 a, b; Gilks et al.,
1997; Gamerman, 1997).  Further, the rediscovery of relative simple, but extremely powerful
simulation techniques has made possible the application of the Bayesian paradigm to many
complex real-world problems (Gilks et al., 1997; Gamerman, 1997).  The techniques are
collectively known as Markov Chain Monte Carlo (MCMC).  We have used MCMC to derive
parameter means and distributions for the NEOTRANS1 model.

2.1  Bayesian paradigm.  For the Bayesian paradigm, there is no distinction between observable
results and parameters of a model – all are considered random quantities.  If “obs” is used to
denote observed results and θ to denote model parameters and missing data, then formal
Bayesian inference requires setting up a joint probability distribution P(obs, θ) over the random
quantities.  This joint distribution comprises two parts: a prior distribution, P(θ), and a
likelihood, P(obs|θ).  The vertical bar indicates that obs is conditional on θ.  The full probability
model is specified as

P(obs, θ) = P(obs|θ)P(θ) = P(θ|obs)P(obs)        (1)

Both P(θ) and P(obs) are unconditional distributions.  When new observations are available,
Bayes theorem is used to obtain the distribution of the parameters P(θ|obs) given (i.e.,
conditional on) the observation:

P(θ|obs) = P(obs|θ)P(θ)/∫P(obs|θ)P(θ)dθ = P(obs|θ) P(θ)/P(obs)        (2)

In this study we are interested in P(θ|obs), where θ is a vector of model parameters.
P(θ|obs) is the posterior distribution of θ given the observations, and it is the object of our
Bayesian inference.

2.2  MCMC analyses.  Our application of MCMC analyses to carry out Bayesian inference is
based on Gibbs sampling, which is a special case of the Metropolis-Hastings algorithm (Gilks et
al., 1997; Gamerman, 1997).  Our MCMC calculations were conducted using BUGS software
(Windows version) (WinBUGS Version 1.2 User Manual, 1999) to obtain the posterior
distributions for the model parameters.

Monte Carlo integration has been connected to Bayesian inference after its introduction
by Kloek and van Dijk (1978).  MCMC is a method of evaluating expressions of the form of
equation (2) (Gilks et al., 1997).  The constituent parts of MCMC are Monte Carlo integration
and Markov Chains.
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The principle of Monte Carlo integration is reflected in the following approximation for
very large N.

∫ ∑
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The right-hand side of equation (3) is evaluated numerically.  Instead of choosing θi at

regular intervals, they are chosen at random.  The error is purely statistical, N/1∝
independent of the dimension of the integral.

In general, drawing samples {θi, i=1,…, n} independently from π(.), the posterior
distribution of the random variables (model parameters) θ, is not feasible, since π(.) can be quite
non-standard.  However, the {θi} need not necessarily be independent.  The {θi} can be
generated by any process that draws samples throughout the support of π(.) in the correct
proportions.  The support of π(.) or any other distribution is the ensemble of x’s (data) for which
π(x) is non-zero.  One way of performing this sampling is through a Markov Chain having π(.)
as its designed stationary distribution.  This is achieved via Markov Chain Monte Carlo (Gilks et
al., 1997).  Suppose we generate a sequence of random variables {θ0, θ1, θ2,…}.  Each time i≥0,
the next state θi+1 is sampled from f(θi+1|θi), which depends only on the current state of the chain
θi.  That is, given θi, the next state θi+1 does not depend on the history of the chain {θ0, θ1,…,
θi-1}.  The stationary distribution of this Markov Chain is the desired posterior distribution (Gilks
et al., 1997).

For the prior distributions of the model parameters, α1, µ1, η1, f1, Ω and the spontaneous
transformation frequency, subjective uniform distributions were used.  The posterior
distributions can have a very different shape than the prior distribution.

2.3  Data used.  The data used to derive model parameters were taken from the literature (Miller
and Hall, 1978; Miller et al., 1979, 1991; Balcer-Kubiczek and Harrison, 1988) and refer to in
vitro irradiation of C3H 10T1/2 cells by X-rays.  Again, the biological endpoint under
consideration was neoplastic transformation.  The doses ranged from 100 mGy to 1000 mGy,
and the dose rates covered the range of 320 mGy/min to 4000 mGy/min.  Altogether 11 data
points were pooled.  They comprised four different dose rates.

3.  MODEL SOLUTIONS

Two phases are considered during in vitro experiments for which the differential
equations were defined in the irradiation phase (time regime t), denoted with subscript I, and the
post-irradiation phase with the dose rate c equal to zero (Schöllnberger et al., 2000).  The latter is
denoted with subscript II and is associated with time regime t′.  Before we give the solutions of
the model equations, we identify the following: xI(t):=NMIhs(t), yI(t):=TPIhs(t), and
zI(t):=PPIhs(t).  NMIhs(t) gives the proportion of hypersensitive cells with NMI at time t, TPIhs(t)
gives the proportion of hypersensitive cells with TMI at time t, and PPIhs(t) gives the proportion
of hypersensitive cells with PPI at time t.
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The solutions were derived in (Schöllnberger et al., 2000) and are as follows:
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with i=1, 2 for the results associated with equation (7).

For the post-irradiation phase we got (Schöllnberger et al., 2000)
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zII(t′)=1-xII(t′)-yII(t′)                  (10)

with xII(t′):=NMIhs(t ′), yII(t′):=TPIhs(t′), zII(t′):=PPIhs(t′) and δ2= -(µ1+η1).

For the closed form solution for the resistant cells, we define oI(t):=STr(t), pI(t):=TMIr(t),
qI(t):=TPIr(t), and rI(t)=PPIr(t).  STr(t) gives the proportion of resistant cells with stable genome
at time t, TMIr(t) gives the proportion of resistant cells with TMI at time t, TPIr(t) gives the
proportion of resistant cells with TPI at time t, and PPIr(t) stands for the proportion of resistant
cells with PPI at time t.
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rI(t)=1-oI(t)-pI(t)-qI(t)
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Eigenvalues κ1, κ2, and κ3 are evaluated as roots of the indicated cubic equation

κ3+(α2c+2µ2+α3c+η2)κ2+[ 2
2µ +η2(α2c+µ2+α3c)+α2c(µ2+α3c)]κ+α2c α3c η2=0.                  (15)

For the post-irradiation phase, we get

rII(t′)=1-oII(t′)-pII(t′)-qII(t′) with      (16)
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with θ1=0, θ2=-µ2, and θ3=-(µ2+η2).

In a cell culture that contains both hypersensitive and resistant cells, the steady-state
solutions for PPIhs(t′) must be multiplied with the fraction of hypersensitive cells, f1.  The steady-
state solution is gained by forming the limit t′→∞:
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where zII(t′) was defined as PPIhs(t′).  s(t′) indicates the fraction of cells that are hypersensitive
and have PPI at time t′.  For xI(t) and yI(t), the solutions given in (4) and (5) must be used, and t
is replaced with D/c, where D is the dose of the irradiation.  Progeny of cells in state PPI are
assumed to have a relatively high risk of undergoing spontaneous neoplastic transformation.  The
follow-up, time-dependent probability, per surviving daughter cell, of spontaneous neoplastic
transformation is given by Ω.  This gives the dose-response TF/SC(D) for induction of neoplastic
transformation per surviving cell:

TF/SC(D)=















λ−λ

α
+

λ−λ
α

η+µ
µ

−
λ−λ
λ+η+µ

+
λ−λ
λ+η+µ

−Ω λλλλ c/D

12

1c/D

21

1

11

1c/D

12

211c/D

21

111
1

2121 e
c

e
c

ee1f

     (21)

This function was used to perform Bayesian inference using a MCMC approach.
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4.  RESULTS

Analytical solutions for model-associated differential equations were evaluated over two
time regimes: t regime (during irradiation) and t′ regime (post irradiation).  Final solutions used
in constructing dose-response relationships were based on steady-state solutions for the t′ regime.

Table 1 gives the doses and dose rates associated with the transformation data used in the
data pool.  It also gives mean predicted values for the number of transformants per survivor.
These are the posterior mean values gained by MCMC.  The observed data for TF/SC are given
in column 4, followed by the relation of observed mean TF/SC to the corresponding posterior
mean values.  Column 6 gives the difference of the mean observed TF/SC and the observed
mean spontaneous TF/SC divided by the corresponding dose.

Table 1: Dose rates, doses, predicted mean transformants per survivor in C3H 10T1/2 cells,
observed mean transformants per 104 survivors, and observed mean divided by predicted mean
transformants per survivor.  The far right-hand column gives the difference between the observed
mean TF/SC and the observed mean spontaneous TF/SC (taken from Miller et al., 1995) divided
by the corresponding dose.  The radiation used was X-rays.

Dose rate
[mGy/min]

Dose
[mGy]

Predicted
transformants
per survivor

Observed
transformants
per survivor

Observed/
predicted

[TF/SC - spontan. TF/SC]/
dose

320 100 6.95E-05 6.86E-05 0.99 1.06E-07
320 300 1.03E-04 1.40E-04 1.36 2.73E-07
320 500 1.35E-04 1.52E-04 1.12 1.88E-07
320 1000 2.16E-04 1.76E-04 0.82 1.18E-07
950 300 1.03E-04 1.24E-04 1.21 2.20E-07
950 500 1.35E-04 1.33E-04 0.98 1.50E-07
950 1000 2.14E-04 1.80E-04 0.84 1.22E-07
4000 250 9.44E-05 5.10E-05   0.54*  -2.80E-08*
4000 500 1.35E-04 1.04E-04 0.77 9.20E-08
4000 1000 2.14E-04 2.46E-04 1.15 1.88E-07
780 1000 2.15E-04 2.55E-04 1.19 1.97E-07

* Results judged unreliable.

Figures 2-7 give the MCMC-generated posterior distribution for the spontaneous
transformation frequency To, the fraction f1 of hypersensitive cells, and the other model
parameters α1, µ1, η1, and Ω.  Again, the parameters µ1, η1 govern the rate of commitment of
cells to the error-free repair and misrepair pathways, respectively.  The parameter Ω determines
the fraction of cells with PPI that produces neoplastically transformed progeny.  Results are
based on 2500 MCMC iterations implemented with WinBUGS software.  Results for the first
1000 iterations were discarded.  Table 2 presents the mean posterior values for the model
parameters, percentiles, and modes.  Table 3 gives the corresponding halftime values associated
with µ1 and η1.
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Figure 2: MCMC-generated posterior distribution for the spontaneous transformation frequency
per survivor, T0, for C3H 10T1/2 cells exposed to photon radiation.  Possible values for T0

appear on the horizontal axis and have no units.  The vertical axis gives the frequency of
occurrence of a given value.  The mean value obtained for T0 was 5.27x10-5 ± 6.63x10-6.  A
normal prior distribution was used.

Figure 3: MCMC-generated posterior distribution for model parameter f1.  Possible values
appear on the horizontal axis (negative values excluded).  The vertical axis gives the frequency
of occurrence of a given value.  The mean value for f1 was 0.41 ± 0.15.  The large standard
deviation reflects the skewed posterior distribution.  A uniform prior distribution was used.
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Figure 4: MCMC-generated posterior distribution for model parameter α1 (mGy-1).  Possible
values appear on the horizontal axis (negative values excluded).  The vertical axis gives the
frequency of occurrence of a given value.  The mean value for α1 was 1.02x10-4 ± 6.98x10-5

mGy-1.  The large standard deviation reflects the skewed posterior distribution.  A uniform prior
distribution was used.

Figure 5: MCMC-generated posterior distribution for model parameter µ1 (min-1).  Possible
values appear on the horizontal axis (negative values excluded).  The vertical axis gives the
frequency of occurrence of a given value.  The mean value for µ1 was 0.65 ± 0.51 min-1.  Very
fast molecular events related to DNA repair are suggested.
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Figure 6: MCMC-generated posterior distribution for model parameter η1 (min-1).  Possible
values appear on the horizontal axis (negative values excluded).  The vertical axis gives the
frequency of occurrence of a given value.  The mean value for η1 was 0.08 ± 0.04 min-1.  The
large standard deviation reflects the skewed posterior distribution.  A uniform prior distribution
was used.

Figure 7: MCMC-generated posterior distribution for model parameter Ω.  Possible values
appear on the horizontal axis (negative values excluded).  The vertical axis gives the frequency
of occurrence of a given value.  The mean value for Ω was 0.09 ± 0.10.  The large standard
deviation reflects the skewed posterior distribution.  A uniform prior distribution was used.
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Table 2: Mean, mode and percentiles of the posterior distributions for the model parameters T0,
f1, α1, µ1, η1, and Ω.  Results obtained refer to in-vitro X-irradiation of C3H 10T1/2 cells.

Parameter Mean 10 % 25 % 50 % 75 % 90 % Mode
T0 5.265E-5 4.452E-5 4.802E-5 5.223E-5 5.712E-5 6.144E-5 5.29E-05
f1 0.4103 0.2618 0.3073 0.3702 0.4726 0.6417 0.30

α1 [mGy-1] 1.018E-4 3.018E-5 4.904E-5 7.533E-5 1.424E-4 2.094E-4 1.19E-04
µ1 [min-1] 0.6545 0.1294 0.1746 0.6386 1.007 1.321 0.14
η1 [min-1] 0.08434 0.04081 0.05643 0.07881 0.1107 0.1375 0.13

Ω 0.09437 0.005616 0.00811 0.07885 0.1543 0.224 0.11

Table 3: Percentiles for halftimes for commitment to the pathways of error-free repair and
misrepair.

Percentile Repair halftime [min] Misrepair halftime [min]
10 % 0.52 5.03
25 % 0.69 6.25
50 % 1.07 8.79
75 % 3.97 12.28
90 % 5.36 16.98

Figures 8a-c show the calculated risk distribution for neoplastic transformation
(conditional on cell survival of C3H 10T1/2 cells) for three fixed X-ray dose rates: 0.1 mGy/min,
10 mGy/min, and 1000 mGy/min.  The figures show that the shapes of the risk distributions for
the three different dose rates are very similar indicating no significant dose rate effect.
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Figure 8:
a: Calculated risk distribution for X-ray-induced neoplastic transformation for a fixed dose of
100 mGy and a dose rate of 0.1 mGy/min; b: Calculated risk distribution for X-ray-induced
neoplastic transformation for a fixed dose of 100 mGy and a dose rate of 10 mGy/min;
c: Calculated risk distribution for X-ray-induced neoplastic transformation for a fixed dose of
100 mGy and a dose rate of 1000 mGy/min.
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5.  DISCUSSION

The initial slope of the dose-response curve for PPI induction is given by:

11

1
11

0D

f
dD

)D(ds

η+µ
η

α=
=

.                  (22)

The initial slope of the dose-response curve for neoplastic transformation is obtained by
multiplying the right-hand side of equation (22) by Ω.  The initial slope is independent of dose
rate.

It is also visible from column 6 in Table 1 that, except for the value that refers to the
largest deviation of predicted TF/SC form observed, there is essentially no dose-rate dependence
of the induction of neoplastic transformation by doses lower than 1000 mGy.  The correlation
coefficient between the dose rates given in column 1 of Table 1 and the slopes given in column 6
is -0.23.  Therefore, based on the 1% significance level for the equal-tails test of the hypothesis
that the absolute value of the correlation coefficient is 0, the dose rate and slope are uncorrelated
(Crow et al., 1960).

Thus, based on NEOTRANS1, a very small dose of radiation will induce neoplastic
transformation with a probability characterized by the following:

•  Is directly proportional to the fraction, f1, of hypersensitive cells.
•  Is directly proportional to the sensitivity of the genomic target in the hypersensitive cells,

which is reflected by the parameter α1.
•  Is inversely proportional to the rate, µ1, at which damaged hypersensitive cells undergo error-

free repair of genomic damage.
•  Is independent of dose rate.

It follows that variability in f1 over different experimental studies using the same cell type
should contribute to variability in the results obtained.

The mean posterior value of 0.65 min-1 for error-free repair of genomic damage in
hypersensitive C3H 10T1/2 cells corresponds to a repair-halftime of 1.06 min (posterior mean).
This indicates that very fast molecular events appear to be associated with this pathway.
Misrepair of damage seems to occur with a somewhat lower probability: the corresponding mean
posterior halftime is 8.22 min.  The percentiles for α1 and Ω indicate that the corresponding
posterior distributions are highly skewed.  The value of 5.26x10-5 for the posterior mean
spontaneous transformation frequency per surviving cell is similar to the value of 4.5x10-5 gained
in a study by Schöllnberger et al. (1999) where a mechanistic state-vector model was tested on
the same biological endpoint.  Miller et al. (1995) gave an observed value of 5.8x10-5.
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6.  SUMMARY AND CONCLUSIONS

It has been shown that for this genomic instability state model of neoplastic
transformation, there are closed form solutions.  The analytical solutions provide greater
flexibility in model applications such as data simulation on neoplastic transformation as
performed in this study and facilitate gaining greater insight about model implications.  Some
key conclusions based on Bayesian inference carried out using MCMC analysis of data for
X-ray-induced cell transformation follow:

•  The initial slope for the dose-response curve for PPI induction and for the risk of neoplastic
transformation for a mixed population of hypersensitive and resistant cells should be
proportional to the fraction of hypersensitive cells.

•  Given f1>0, a small dose of radiation would be expected to induce neoplastic transformation
with a probability that (1) is directly proportional to dose; (2) is directly proportional to the
radiosensitivity of the genomic target in hypersensitive cells; and (3) is inversely proportional
to the rate at which hypersensitive cells with radiation-induced genomic damage undergo
correct repair.  For doses up to 1000 mGy, the induction of neoplastic transformation does
not depend on dose rate.

•  Very fast molecular events appear to be associated with repair of genomic damage in
hypersensitive C3H 10T1/2 cells.

•  Misrepair of damage in hypersensitive C3H 10T1/2 cells appears to occur with a lower
probability relative to commitment to the correct repair pathway.

•  Different cells may repair/misrepair genomic damage at different rates.
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