
Complex Electrical Resistivity for Monitoring DNAPL Contamination
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Electrical impedance response is measured over a wide range of 
frequencies in order to capture the relaxation time distribution.

A simplified physiochemical model is used to invert the broadband 
impedance data for apparent grain-size distribution and 
geochemical parameters.

Apparent grain size information can be used to predict the sample 
permeability.

Electrical-impedance spectroscopy and induced polarization 
measurements will be used to characterize and monitor the pore-
scale distribution and geochemical reaction of organic 
contaminants within natural and synthetic porous media. 

These methodologies will be applied to the interpretation of 
complex resistivity and induced polarization data collected at well-
characterized field sites containing DNAPL contamination.
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Nearly all Department of Energy (DOE) facilities have
landfills and buried waste areas. Of the various 
contaminants present at these sites, dense non-aqueous
phase liquids (DNAPL's) are particularly hard to locate 
and remove. There is an increasing need for external or
non-invasive sensing techniques to locate DNAPL's in 
the subsurface, to track their spread, and to monitor
their breakdown or removal by natural or engineered
means.

This research is motivated by the following simple hypothesis: as organic compounds 
are removed (e.g., biodegraded or extracted through engineered remediation) the 
complex resistivity will change according to the new chemical make-up of the 
soil/groundwater system. Thus complex resistivity measurements can be used as an
effective monitoring tool to indicate the progress of remediation activities.

The broadband electrical-impedance response of rocks and soils depends upon the
sample microgeometry, the pore solution chemistry, and the surface chemical properties
of the system.  Organic pollutants can alter both the bulk fluid chemistry and the surface
chemical properties of a porous medium. The distribution and reaction of an organic
contaminant within a porous solid is a complex function of the chemical, physical and
biological properties of the system. Laboratory and field studies suggest that many 
organic pollutants (e.g. DNAPL's) have distinct signatures that can be identified by 
measuring the complex electrical resistivity of the contaminated sample. We propose 
to bring the field measurement of complex resistivity as a means of pollution 
characterization from the conceptual stage to practice. For this purpose, 
electrical-impedance spectroscopy experiments will be conducted to more fully 
characterize the geophysical signatures and detectability of various organic 
contaminants within well-characterized rock and soil samples.  Experiments will also be
conducted using synthetic silicate glasses for which we can systematically vary the
microgeometries and surface chemical properties of the samples. Physiochemical
models will be used to interpret these experiments and integrate the results with 
published data sets. These laboratory observations and theoretical models will be 
applied to the development of improved field techniques for the electrical characterization
and monitoring of organic pollutants. 

Complex resistivity and induced polarization measurements show great promise as means of 
characterizing the surface chemical and hydraulic properties of rocks and soils. These geophysical 
methods should ultimately be able to yield in-situ information about chemical and physical parameters 
that control the transport and reaction of organic pollutants (e.g. DNAPL's) within geological aquifers 
and reservoirs. Recent advances in geophysical instrumentation and interpretation programs have 
facilitated the use of complex resistivity and induced polarization methods in environmental 
applications. An improved understanding of the physical and chemical mechanisms that control the 
electrical impedance responses of contaminated rocks and soils will lead to more effective and wide-
spread uses of these powerful tools for task such as the non-invasive characterization and monitoring 
of DNAPL contamination.

(Berg,  1970)


