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Cs SORPTION CHEMISTRY IN UNCONTAMINATED SEDIMENTS
RESULTS AND IMPACT
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A Tank Farm Under
Construction at Hanford

Status of Single-Shell HLW Tanks in the
200 Areas of Hanford

s High level radioactive wastes resulting from the extraction

of Pu and other strategic elements have been temporarily
stored in massive underground tanks ranging from 55,000
to 1 million gallons.

s The waste materials are highly complex and varied in
composition containing high base, salt, radioactivity, metals

and organic compounds.
s Sixty seven single-shell tanks at Hanford have leaked

discharging over 1 million gallons of HLW and over 1 million
Ci of 137Cs.

s The in-ground inventory of radioactive Cs is the largest at Hanford.

s Limited in-ground characterization suggests select cases of
expedited migration.

s Reactive [OH- ,  Al(OH) - ] and competitive (Na +, K+,  N H4
+ ) in HLW

supernate are speculated to enhance migration.

Hypotheses and Objectives
Hypotheses
s Micaceous fraction (MF) is dominant sorbing phase.
s High I ([Na +]) of wastes will suppress all but reactions to frayed edge site s

(FES) on micas.

s [    ], ion selectivity, and structural aspects of FES will chan ge after contact
with HLW.

Objectives
s Determine changes to highly selective ion exchange thermodynamics and

kinetics after contact with the tank simulants over variable t.
s Reconcile changes with microscopic/molecular transformations of the FES.
s Access viable models.

I. Characterize Cs -sorbing phases and surface reactions in vadose zone sediment
- Ambient pH (~8.5), Cs +:  1 0 - 7-1 0 - 4 mol/L; Na+:  0 .5 -10 mol/L; K+:

0 . 0 0 5 -0.05 mol/L; NH4
+:  0 . 0 0 5 -0.05 mol/L

II. Determine impacts of high base (congruent dissolution) on Cs sorp t ion
chemistry and phases
- Variable Na (>1 mol/L), variable OH- (>1.0 mol/L), variable temp. (23°-8 0 °C )

III. Determine impacts of high base with high Al (incongruent dissolut ion/
precipitation) on Cs- sorption chemistry and phases

- Parallel to II, but with variable Al(OH)4 at 23°C

Tasks

Approach
Multicomponent ion exchange selectivity
s Batch experiments/thermodynamic analyses
s Blocking agents (Ag -TU) to isolate FES
s Multiple site exchange calculations
Fixation kinetics

s Batch experiments with NH4
+/Rb + displacement

s “single particle” studies
Cs structural relationships and lattice penetration
s XREM; XRM; phosphor imaging

Cs chemical environment
s XAS
Surface structure/topography
s SPM, FESEM
Structural environment
s HRTEM

Boreholes Used for Composite Samples
s Sediment samples from beneath the tank farms

are difficult to obtain.

s RCRA monitoring wells have been placed around the
tank farms and these provide limited volumes of
uncontaminated sediments

s A 25 kg reference vadose zone sediment representative
of the 17m below the SX farm was created by compositing
over 100 core subsamples from the appropriate depth
intervals of six wells.

s The reference vadose zone materials is called the 
“Above B” composite.

Muscovite from “Above-B” Sediment

Biotite from “Above-B” Sediment Vermiculitized Biotite from “Above-B” Sediment

Three general types of micas are found in the “Above-B” composite; muscovite, biotite, and a vermiculitized biotite.
These are found in most size fractions of sediment at 10-30 mass %, with the highest concentration in silt and clay.

Research Results
s The dominant Cs+ sorbing phase in uncontaminated and contaminated tank farm sediments

was the micaceous fraction.
- Vermiculitized biotite most important
- Adsorption localized along cracks, edges, and weathering featur e s

s Cs+ adsorption in Na+ and K+ electrolyte consistent with a two -site model
- High affinity sites associated with micas

- Low affinity sites on smectite/vermiculite basal plane

s HLW components effect Cs + sorption to sediment
- High Na suppresses Cs + sorption except to high affinity sites
- High base induces mineral transformations that increase CEC an d sorption affinity

Relationship Between Depth Distribution of 1 3 7Cs and SX Tank Farm Stratigraphy
s Characterization activities at Hanford are evaluating the in-g r o u n d

distribution of 137Cs and other radionuclides surrounding SST’s
that have leaked.

s A 137Cs contaminated sample (2C/2D) was obtained from well
4 1 -0 9 -39 accessing vadose zone sediment beneath SX-109  and
SX-1 0 8 .

1 3 7Cs vs Particle Size Composite 2C/2D

Isolation of Radioactive Particles

Phase Residence of 1 3 7Cs

s Radioactive particles were isolated by iterative
phosphor  – imaging and particle manipulation

s The cold particles were typically quartz.  Hot

particles were mineral aggregates, that, when 
disaggregated, yielded micaceous minerals as the 
location of 137Cs. 

s The 137C s-containing micas were manipulated
into populations of biotite (black), vermiculitized
biotite (rust), and muscovite (transparent).

s Phosphor-imaging (left) showed that all micas

contained 137Cs, but the signal was greatest
from vermiculitized biotite (center).

s Single particle counting (right) was performed
to convert phosphor intensity units (PSL) to 
137Cs content (Bq). 

s The 137Cs content of individual mica particles
was then determined. 

Chemical Model of Cs Sorption Sorbing Phases

s Micas (biotite, vermiculite, muscovite) were 

picked from Hanford sediment, contacted with
CsCl(aq) (10 - 2 mol/L) and analyzed by electron
microprobe, (white intensity is concentration).

s Biotite appeared as the strongest Cs + sorbent,
binding Cs+ to its edges.

1 .    Ion Exchange

s uCs+
(aq) + vAXu =  u C s X  +  v A(aq)

u+ ∆GC s X,  k f / r (CsX)
- X- are planar fixed charge sites associated with 

expansible phyllosilicates

2 . High affinity exchange

s Cs+
(aq) + BFES = CsFES + B +

(aq) ∆GC s F E S,  k f / r (CsFES)
- FES - are highly selective wedge sites associated with 

weathered mica edgesCsFES is an “Inner sphere” surface
complex

B = NH4
+, K+

3 . Solid state replacement/fixation
s CsFES+ KM = CsM + KFES ∆GCsM,  k f / r (CsM)

- M - are CDTC associated with mica interiors
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s Cross-sectioned Cs-spiked muscovite showed Cs+ adsorption to macroscopic
frayed edge areas.

s Cross sectioned Cs-spiked biotite was analyzed by electron microprobe
left and synchrotron X-ray microprobe (APS) right.

s Cs+ showed localization in intraparticle channels parallel to the C- axis.

s The plan -view distribution of Cs+ on Cs- spiked biotite was complex showing
influence of physical disturbance (cracking) and weathering [Fe(II) oxidation].
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s The influence of high salt (90% saturation with NaNO 3(s )) was evaluated with two particle size isolates 
s High salt suppressed all Cs+ sorption to low affinity planar sites.  Na+ competed for high affinity FES Kd’s 

for the high affinity sites varied because of different CEC’s in the size fractions.
s All data converged on a single Kc function indicating identical sorption site selectivity in the two fractions

s Adsorption of Cs+ to uncontaminated tank farm sediment (S-SX)
can be described with a two - site model for Na+ and K + electrolyte,
and a continuum model in Ca 2+ electrolyte 

s The modeling supports a basic two - site model with high affinity
frayed edge sites on mica (CsFES), and low affinity planar sites on 

smectite/vermiculite (C s X).
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Biotite Vermiculite Muscovite a.  CCD Camera b.  Synchrotron X-ray Microprobe

uCs+
(aq)+ vAZ u = uCsZ+  v Au+

(aq)

Kc = [Au+]v[NCsZ]u/[Cs+]u[NAZu]
v

Z- = exchanger phase charge
N  = mole fraction

where Z- = FES - + X- = CEC

s The tank farm composite sample was reacted with variable concentrations of OH- at
different temperatures to simulate effects of HLW contact.

s High base and elevated temperature induced oxidation, Fe expulsion from primary 
minerals, and Fe(III) oxide precipitation.

s Base treatment had little impact on Cs+ sorption (Kd)  i n  N a+ electrolyte, but enhanced
Cs+ sorption (Kd) from K + electrolyte.

s The macroscopic CEC’s were changed by base treatment (not shown) and the computed
selectivity coefficients (Kc ) showed tendency to increase after reaction with OH- .

The Geochemistry of 137Cs+ Beneath Leaked HLW Tanks at Hanford:  Adsorption Reactions and Mineralogic Residence

John M. Zachara, James P. McKinley, Calvin C. Ainsworth, Steven C. Smith, and Chongxuan Liu
Pacific Northwest National Laboratory, Richland, WA  99352
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