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Goals

Graft ligands (L) on or dope them in inorganic polymers
(SIO, or MO,) as an alternative to L-containing organic
polymer sorbents

Utilize the hydrophilic SIO, or MO, network with intrinsic
fast metal ion diffusion

Use template-imprinting process to enhance capacity and
selectivity

Understand the M-L binding in heterogeneous and
anisotropic chemical environment in such hybrid sol gels
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Background

Previous studies about Inorganic polymers as metal

sorbents
Grafting ligands on the external surface of preformed
silica gel
Self-assembled monolayers of mesoporous supports
(SAMMS);1

Crystalline silicotitanates (CSTs) for Cs* removal?

Organofunctional sol-gels® from [(RO),Si-L] ~M have been
studied as new metal catalysts and materials for metal
separation®

Template-imprinting has been used for high-selectivity
separation materials, zeolites, and nanoporous silicas®
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Our approach
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Mesoporous T10,-S10, Sorbents for Cs* and
U02 2+

Prepared a series of surfactant ordered, mesoporous
mixed TiO,-SIO, oxide (100% -> 0% Si vs. Ti) materials
Uranyl uptake by mesoporous sorbents is over 200 times

faster than observed for comparable microporous
materials

Investigated the use of block copolymers in developing
mesoporosity in base-stable, mixed TiO,-SIO, oxide
materials for Cs* extraction

Removed >90% Cs™* selectively within 1 h (Cs* capacity:

0.5 mmol/g) in the presence of a 10-fold excess of K* and
30-fold excess of Na* competitor ions
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Hybrid Sol-Gel Sorbents Containing Tethered or
Doped Organic Ligands

Cu?*, Hg?*
Easy gel preparation from off-the-shelf chemicals in 1.5 hr

Reduce Cu?* from 8.6 - 0.0 ppm (below AA detection limit:
2 ppb) in the presence of competitive Cd4* and Zn4*>

Durable and stable for multiple cycles

Fast Cu?* binding kinetics

Regenerate and recycle from Cu?*-loaded gel in 5 min

No secondary waste during application

For Hg?*, 10 mg of gels - [Hg?*] at 2 ppm (20 mL) to 0.0
ppm
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Table 1. Competitive binding behavior of the ethylene diamine (aapts)-grafted sol-
gel solutions (25 mg gel in 2.5 mL of solution buffered at pH = 5.00)

Initial Conc. Final Conc. Ky
(mg/L) (mg/L)
1. For a mixture solution of ca.
1 mM of Cu?+, Cd?* and Zn?*
Cu?t 71.8(0.3) 4.4(0.2) 1.54 x 103
Cd?+ 115(2) 108.6(1.5) 5.74
Zn2+ 70.3(1.6) 63.8(0.4) 10.15
2. For a mixture solution of ca.
0.1 mM of Cu?*, Cd?* and Zn?*
Cd?* 11.18(0.10) no intake of Cd?* was observed
Zn2+ 8.23(0.05) 7.80(0.06) 5.51




Metal removal cycles 4

/4C< /adjusting pH
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Crown ether/sol-gel materials showed high affinities for
Sr2*: Alternative to crown ether/solvent extraction and
liguid membranes

Removed >99% Sr2* ([Sr?*]: 27.6 ppm - 0.010 ppm) in the
presence of a 4-fold excess of Ca®* competitor ions

Easy gel preparation from off-the-shelf chemicals
Potentials to work in alkaline solutions
Avoid the use of organic solvents
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Table 2. Sr?* Extraction by Embedded Na,oddm Ligand

Initial [Sr2*]2 Final [Sr?*]a K4P Sr2* Removed (%)
Control° 27.600 £ 0.006 24.3%0.7 22 12
Doped gel 27.600 £ 0.006 0.33+0.01 11,000 99

appm bK4 in [mg of Sr2*/g of gel] / [ppm of Sr?* remaining]
¢Control containing no Na,oddm ligand  9Competitive binding in a solution
containing 118 ppm Ca?*
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Imprinting Studies of Organofuntional
Hybrid Sol-Gel Sorbents

Metal templated ligand assemblies ([M(L~~SIi(OR),),]**)
are grafted onto the surfaces of preformed mesoporous
sol-gel solid

Removal of the metal template leaves the set of n ligands
tethered to pore surfaces

Organized manner based on the size and electronic
signature of template

Higher capacities for Cu?* in a mixture of Cu?* (1 mM) and
Zn?* (5 mM): 99.6% Cu?*/52.6% Zn?* vs. 98.5% Cu?*/70%
Zn?*in control®
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Table 3. Competitive Loading of M; (Cu?*) and M, (Zn?*) by Cu?*-Imprinted and
Control Blank Mesoporous Sorbents at pH 5.0 (Acetic Acid/Acetate Buffer).

Type Solution (M) %Cu?* Abs %Zn?* Abs Cu?* K@ Zn?*K2 k K
nonimp-aapts 0.001 Cu?*/0.001 Zn2* 98.5 96.6 6543 2872 23 -
Imp-aapts 0.001 Cu?*/0.001 Zn?* 99.8 82.9 44045 483 91 40
nonimp-aapts 0.001 Cu?*/0.005 Zn2* 98.5 70 6539 233 28 -
Imp-aapts 0.001 Cu?*/0.005 Zn?* 99.6 52.6 23874 111 215 7.7

aK, units: mL/g
aapts: H,NCH,CH,NHCH,CH,CH,Si(OMe),

relative selective coefficients k' (k' = /k

control?

k=K

d (target)/ Kd

kimprint-coated (competitor))
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Surface anionic groups (Si-O°) interact with the charged
head groups of cationic surfactants (M,*)

Develop mesoporosity within the gelling, as-synthesized
solid

Second cationic species such as a ligated template
complex M[L~~SI(OR);],™*, Is intercalated into pores,
exchanging with and removing the surfactant

>1.0 mmol/g ligand loadings (the highest ligand loadings
for the 1st generation was ~0.7 mmol/g)’
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Template complex is associated with the developing pore
surface as it is formed

Molecular architecture on two dimensional scales -
mesoporosity with pore radii > 20 A and microporosity
from the point of view of creating a metal ion imprint

Involving tethered ligands and surface functionality on the
order of 1-3 A

The highest selectivity in the current literature for Cu?*in a
mixture of Cu?* (1 mM) and Zn%* (10 mM): 99.98%
Cu?*/2.40% Zn?* vs. 93.37% Cu?*/10.64% Zn?*in control®
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Table 4 Binding Affinity and Selectivities of Hierarchical Imprinted Sorbents.2

Type Solution (M)P %Cu?* 9%Zn?* Ky (Cu?*) Ky (Zn?*) k k™
[Cu2*] [Zn2*]  Absd Absd (mL/g) (mL/Q)

Nonimp-aapts (CTAB)¢ 0.001 0.001 99.66 99.77 29000 44000 0.66 -
Imp-aapts (CTAB) 0.001  0.001  99.17  10.13 11000 67 160 240
Nonimp-aapts (SDS)¢ 0.001 0.001 96.07 44 .59 2400 71 34 -
Imp-aapts (SDS) 0.001 0.001 99.56 13.31 23000 15 1500 44
Nonimp-aapts (SDS)  0.001 0.01 93.37 10.64 1400 10 140 -
Imp-aapts (SDS) 0.001 0.01 99.98 2.40 82000 2.5 33000 240

aCompetitive loading of Cu2* and Zn?* by Cu?*—imprinted and control blank mesoporous sorbents (pH
= 5); PInitial conc.; €aapts imprinted and nonimprinted sorbents prepared with CTAB; 9percentage
metal ion absorbed; eSDS: sodium dodecylsulfate
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Concluding Remarks

General feasibility of using hydrophilic, porous metal oxide
based materials as sorbents for metal ion extraction

Simple, one step preparations of new hybrid sol-gel
materials which exhibit fast binding kinetics, and high
capacities and selectivities for Cu?*, UO,**, Sr* and Cs*

Development of several different methods for preparing
Imprinted, hybrid sol-gel sorbents which give the highest
distribution coefficients (K,) and selectivities

New sol-gel precursors (RO),Si~—L have been prepared
and their abilities to selectively bind target ions are
currently under evaluation in hybrid sol-gel sorbents
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