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Research Objectives
The objective of this research project is to develop a
fundamental understanding of radiation effects in glasses
and ceramics at the atomic, microscopic, and macroscopic
levels, including the impact of such solid-phase radiation
effects on dissolution kinetics.

This Research Addresses Several Needs of the
Nuclear Materials & High-Level Waste Focus Areas

GOALS & IMPACTS
• Provide underpinning science and rationale for improved

materials for immobilization of high-level tank wastes and
stabilization of nuclear materials

• Develop scientifically-based predictive models of
performance for nuclear waste forms and stabilized
nuclear materials



Experimental Studies

• Detailed characterization of radiation-induced structural changes
in Pu-containing glasses and zircons nearly complete

• Annealing study of Pu-containing zircons initiated

• Ion-irradiation studies of zircon and several titanate pyrochlores
over a wide range of experimental conditions nearly completed

• Dissolution testing completed on several titanate pyrochlores

• Tentative performance models developed for apatite and zircon

• Performed ion/electron-beam studies of bubble formation in
several glasses

• 7 glass compositions were γ-irradiated at 50, 100, 150, & 200°C
to doses of 25, 75, and 150 MGy (highest dose equivalent to 25
years storage for defense HLW glasses)

Research Status / Accomplishments



Research Status / Accomplishments

Computer Simulations

• Oxygen vacancy migration pathways and energies calculated for
fused silica and related structures (Ph.D dissertation research)

• Developed capability to study localized electronic excitations (self-
trapped excitons) in silica and their effect on defect production and
migration (Ph.D dissertation research)

• Developed and used computer simulation methods to determine
threshold displacement processes/energies in zircon

• Initiated molecular dynamics study of collision cascades in zircon

• Calculated vacancy migration pathways and energies in zircon

• Calculated stable configurations for Pu substitution in zircon

• Developed and used kinetic Monte Carlo method to simulate
amorphization process in zircon
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Stored Energy & Swelling in Pu-Doped Glass

Stored Energy (defect accumulation) increases more rapidly with 
cumulative dose than Swelling (network rearrangements).

Cumulative Dose (1018 α-decays/g)
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EXAFS Results on Pu-Glasses

Radial Distance (Angstroms)
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Results suggest that the concentration
of U6+ is reduced with increasing dose,
an interpretation that is consistent with
the observed XANES profiles.

The lowest dose glass exhibits a
Fourier transform peak at about 3.5 Å,
which corresponds to a U--U
scattering path at 3.62 Å, suggesting
the presence of polymeric uranium
species.  The occurrence of polymeric
uranium suggests that the uranium is
not uniformly dispersed and uranium-
rich domains or clusters are formed.

The absence of a U--U scattering path
at higher doses suggests the absence
of polymeric uranium and may reflect
either a radiation effect or possible
differences in synthesis conditions.

Reference: NJ Hess, WJ Weber, & SD Conradson, Journal of Nuclear Materials 254 (1998) 175-184.



Pu-Doped Glasses: XAS, XRD, EPR

• No significant change in local cation coordination or
cation-O bonds lengths with increasing dose.

• Decrease in concentration of U6+ with increasing dose.

• Decrease in Fe coordination with increasing dose.

• Contraction of Fe-Si, Mn-Si, and Pu-Si distances and
broadening of silica O-O distances with increasing
dose suggests changes in the Si-O-Si bond angle.

• EPR results (D. Griscom, NRL) suggest the breakup of
Fe3+ clusters with increasing dose.

To be done: Raman & Infrared Photoluminescence to probe for O2;
XAS to probe local B structure; Changes in Dissolution Kinetics.



Beta/Gamma Effects in Glasses

Seven glass compositions have and continue to be irradiated
in PNNL 60Co facility (1x104 Gy/hr) at 50, 100, 150, and 200°C
• Reference Waste Glasses: 10Na2O - 10B2O3 - 50SiO2 - 30(ZrO2, TiO2,

Fe2O3, Al2O3,CaO, MgO, Cs2O, Li2O)

• Borosilicate Glasses: 15Na2O - 20B2O3 - 65SiO2 - (5FeO or Fe2O3)

• Fe-Phosphate Glasses: 15Na2O - 30Fe2O3 - 55P2O5 - (5CsO2)

Accumulated doses = 2.4x107, 7x107, and 1.5 x108 Gy (highest
dose is equivalent to about 25 years storage for defense HLW glasses)

Characterization Methods
• UV-VIS, Raman, FTIR, and ESR

Observations
• No significant changes in volume

• Some electronic defects are observed in optical absorption spectra

• Peroxy radical defects formed at all temperatures (Fe-free glasses)
• Boron-oxygen hole centers produced in Na-borosilicate glasses



• Minimum Kinetic Energy to Displace an Atom from Its Normal Site

• Important Damage Parameter for Alpha Particles

• Important Damage Scaling Parameter for both Alpha-Recoils and
Ion-Beam Simulation Experiments

Threshold Displacement Energy

For ZrSiO4, Energy Minimization Methods Yield:

Ed(Zr)=80 eV, Ed(Si)=20 eV, and Ed(O)=45 eV



Threshold Displacement Processes in Zircon

Point defect notation

Replacement
ZrZr Replacement of a Zr site by another Zr atom
SiSi Replacement of a Si site by another Si atom
OO Replacement of an O site by another O atom

Substitution
ZrSi Substitution of a Si site with a Zr atom
SiZr Substitution of a Zr site with a Si atom

Interstitial
Zri A Zr atom in an interstitial position
Sii A Si atom in an interstitial position
Oi A O atom in an interstitial position

Vacancy
VZr A vacancy in the Zr sublattice
VSi A vacancy in the Si sublattice
VO A vacancy in the O sublattice



Point defect types
Direction Ed (eV) VO Oi OO

[021 ] 23 ± 2 1 1

[111] 44 ± 2 3

[010] 34 ± 2 2 2 2

[201] 68 ± 2 1 1

[001] 82 ± 4 1 1 3

[100] 93 ± 2 1 1 4

[ 101] 107 ± 6 1 1 3

Point defect types
Direction Ed (eV) VSi Sii VO Oi OO

[ 101 ] 48 ± 2 1 1 1 1 2

[111 ] 48 ± 2 3

[111] 52 ± 2 3

[011] 65 ± 5 1 1 1

Displacements: Zr sublattice

Displacements: Si sublattice Displacements: O sublattice

Threshold Displacement Processes in Zircon
Results of Molecular Dynamics Simulations

Point defect types
Direction Ed (eV) ZrZr VZr Zri VSi Sii ZrSi SiZr OO

[110] 98 ± 2 1 1 1 1

[111] 110 ± 3 1 1 1

[001] 119 ± 6 1 1 2 1

[210] 122 ± 3 1 1 1 1

[101] 143 ± 3 1 1

[100] 146 ± 3 1 1 1

[011] 166 ± 3 3 1 1 3



Defect Migration Energies in Zircon

Reference: RE Williford, WJ Weber, R Devanathan, and AN Cormack, Native
Vacancy Migrations in Zircon, Journal of Nuclear Materials 273 (1999) 164-170.

To be done:  Determine Interstitial Migration Energies (these
control many recovery processes under repository conditions).
Calculate Defect Migration Energies in Pyrochlore Systems.

Vacancy Formation & Migration Energies
(calculated using energy minimization methods)

Type         Formation Energy     Migration Energy

  O      3.3 eV         1.2 eV

  Zr      6.2 eV         1.2 eV

  Si         --     --



Pu3+ →→  2Pu3+
Zr + VO defect cluster (1.0 eV/Pu)

Pu4+ →→ Pu4+ substituted on Zr4+ site (0.3 eV/Pu)

 

VO
.. Pu3+

Zr

Pu3+
Zr

Zr4+

Si4+

O2-

Reference: RE Williford, BD Begg, WJ Weber, and NJ Hess, Computer Simulation of
Pu3+ and Pu4+ Substituions in Zircon, Journal of Nuclear Materials 278 (2000) 207-211.

Lowest Energy Configurations for Pu in Zircon



Displacement Cascade in Zircon

MARLOWE gives the most
realistic description of defect
production from alpha-recoil

cascades available at this time.

Good first order approximation
to cascade damage needed as

input to kinetic Monte Carlo
simulations.

Have generated hundreds of
different high-energy cascades

for good statistics

94 keV 234U-Recoil Cascade Calculated using
Binary Collision Code MARLOWE

Zr
Si
O

Only Vacancies are Shown

40 nm



Alpha Decays per Gram
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Good Agreement between Experiment and Simulation.
Reference: HL Heinisch and WJ Weber, Journal of Nuclear Materials (2000) submitted.

Zircon: Kinetic Monte Carlo Simulation

1000 234U cascades from MARLOWE randomly generated in simulation cell



Pu-Containing Zircon: XAS & XRD Results

• Pu present as Pu3+ (preparation under Ar atmosphere).

• Pu3+ oxidized to Pu4+ below 1000°C.

• Amorphization state retains distorted zircon structure and
stoichiometry, consisting of SiO4 and ZrO8 polyhedra
rotated relative to each other.

• Direct recrystallization of crystalline zircon from
amorphous state occurs at 1200°C if heated rapidly.

• Decomposition to oxides occurs if heated at 1000°C for
12 hours.

To be done:  Annealing Study of Oxidation of Pu3+ to Pu4+ (determine
relative oxygen vacancy mobility in crystalline and amorphous states)
and Study of Changes in Dissolution Kinetics and Solubilities.



Amorphization Kinetics in Zircon

In Situ Study of Temperature and Ion-Mass Dependence

Good agreement
between heavy-ion

(Pb & Bi)
simulations and

238Pu results.

 Heavy ions are
less effective in
amorphization of
zircon.  This may

be due to
decreased defect
survival from in-

cascade recovery
processes.
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Reference: WJ Weber et al., MRS Symp. Proc. 540 (1999) 367-372. 



Amorphization Kinetics in Gadolinium Titanate

Results indicate
good agreement

between ion-
beam simulations
and 244Cm doping

experiments.

The critical
temperature, Tc,

appears
independent of
ion mass, which
suggests Tc is

determined by a
thermal recovery

process.
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Amorphization in Pyrochlores

Results suggest
that the

temperature
dependence of

amorphization is
similar for a range

of rare-earth
titanates with the

pyrochlore
structure.

In Situ Study of Temperature and Composition Dependence
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Reference: BD Begg et al., Amer. Ceram. Soc. Symp. Proc. (2000) in press. 



Dissolution Rates for Gadolinium Titanate

Results suggest
incongruent

dissolution and
that radiation-

induced
amorphization
increases the

dissolution rates
for Gd by ~10x

and for Ti by ~2x.

Radiation-Induced Amorphous State vs Unirradiated Crystalline State
Single-Pass Flow-Through Test Method: 90°, pH 2

These results are also consistent with the 20x and 50x increases in dissolution rates
for Cm and Pu, respectively, in Cm/Pu-doped Gd2Ti2O7 (Wald & Weber, 1984).
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Reference: BD Begg et al.,

J. Nucl. Mater. (2000). 



Dissolution Rates for Lutetium Titanate
Radiation-Induced Amorphous State vs Unirradiated Crystalline State

Single-Pass Flow-Through Test Method: 90°, pH 2

Results suggest
radiation-induced

amorphization
increases the

dissolution rates
for Lu by ~3x and

for Ti by ~10x.
Results also

support
incongruent
dissolution
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Reference: BD Begg et al., Journal of Nuclear Materials (2000) submitted. 



Dissolution Rates for Yttrium Titanate
Radiation-Induced Amorphous State vs Unirradiated Crystalline State

Single-Pass Flow-Through Test Method: 90°, pH 2
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Results suggest
radiation-induced

amorphization
decreases the
dissolution rate
for Y by ~1.5x
and increases
the dissolution
rate for Ti by

~1.7x. Results
also support
incongruent
dissolution

Reference: BD Begg et al., Journal of Nuclear Materials (2000) submitted. 



Potential Benefits

New Scientific Understanding and Scientifically-Based
Models on the Effects of Radiation on Structure and
Chemical Durability will lead to the following benefits:

• Development of Improved Materials for the Immobilization
of High-Level Tank Wastes and Stabilization of Nuclear
Materials

• Development of Scientifically-Based Predictive Models of
Performance for Nuclear Waste Forms and Stabilized
Nuclear Materials

• Stronger Scientific Basis for Performance Assessments will
assist with Regulatory Approval and Public Acceptance


