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Reductive Immobilization

HCrO, +3e +4H"= Cr(OH),(s) + H,O
UO,* + 2e = UO,(s)
TcO, +3e +4H" =TcO, (s) + 2H,0

Reductants for groundwater remediation
Dithionite, sulfide

Fe?t, Fel, FeS

Organic compounds

Biotic vs abiotic processes

Gaseous Reductant for soil remediation
Hydrogen Sulfide




In Situ Gaseous Reduction with H,S

*>70% of Cr(VI) at the demonstration site was immobilized
*ISGR technology can be safely deployed

Creation of Reductive Barriers for
Contaminant Interception

Reductive Immobilization

of Existing Contaminants




Molar ratios of the consumption of S(-II) vs. Cr(VI)

Temp. S, | [CM], S'- oxidized v.s. R?
°C) (nM) (nM) Cr'! reduced
1 1 4 Y=149x-0.28 0.9625
5 00 0 9 x Cr(OH)3(s)
15 100 200 Y=1.60x+0.38 0.9968
25 100 200 Y=1.54x+0.72 0.9972
25 100 40 Y=153x+2.74 0.9894 - SN
25 200 40 Y=1.44x+0.42 0.9769 o

100.00 nm

HRTEM Image

Reaction Stoichiometry:
2CrQ,* + 3HS  + 7TH* = 2Cr(OH),(s) +3S(s) +2H,0

NOT as previously reported
(8CrO > + 3H,S + 10H* + 4H,0 > 8Cr(OH);,(s) +3S0,*)



(pH=7.80, 25°C, [S'"], = 800 pM)

In[Cr"'] (mM)

= N
= o N o
\

1 1

1 1 1
! U
X @
1 1 1
' ' ]

X

[Cr(VD)],
A.20uM
B. 30uM
C. 40uM
D. 50uM
E. 60uM

15 20

Time (min)




3.0
1.50 -
y = 0.94x-2.46 s S
€ 1.00 - R®=0.9522 25
£ .
E B S: 2.0 e ©
S 050 3 |
£ b < 18
£ 000 -
1.5 20L
050 | ‘ | ‘ |
200 250 300 350 400 450 0 e ‘
0 10 20 30 40 50
In[CrV']o (u M) Reaction time (min.)

Reaction order with respect to [CrY'] = 0.94 Reaction order with respect to [H,S],= 1.1

pH66 @
pH7.0 o©
pH74 A time (min.)
pH7.8 A 0.1
pH82 0 20 40 60
25 | | |
HEPES Buffer Phosphate Buffer Borate Buffer 0.08 -
A H66 @
20 # E p A a
A e o ™ pH7.0 © A =
_ a *a0 e M PHT3 a Qo 5 S
S 15 N A 4+ a 4 o 0.06 @
2 'Y N ., A * o o 2 =
= A 2
S O A A A i ° = 2
= 10 A o A o A 4 =
o o A, [0 0.04 - s
o A pH89 @ g
5 d T e o +pH92 ©
e O pH9.8 A 0.02
° ° o :
9 O o9 Py Py °
0 T ) i ® T T T
0 20 40 60 0 200 400 600 800
time (min.) time (min.) 0

Reaction rate increases as pH is decreased



Step 1. Precursor Formation
CrO,> + H,S ~—~ k {HS -(Cr0O,)---OH}*
Step 2. Electron Transfer
{(HS---(Cr0O,)---OH}* —“.§, +Cr'VO,>* + H,0
Step 3. Fast reactions involving Cr(IV) and Cr(V)
Cr!v + CrV! s, 2CrVY
ZCrIV & CrIII + CI’V
CI’V + SII- <—ki> ZCI'IH + SO

The following derived kinetic equation explains all experimental observations

diCr(VD)] = —kk,[CrO,” 1[H,S], { [H T

dt k., +k, [H'] +[H']K, + Kle}



(pH=7.80, 25°C, [Cr(VI)], =40pM, [S(-II)],=800 pM)

In[CrV'] (zM)
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Effect of externally added elemental S
(pH=8.30, 25°C, [H,S]=800mM)
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Elemental sulfur nanoparticles
catalyze Cr(VI) reduction by sulfide

Environ. Sci. Technol. 39, 2087 — 2094 (2005)




Possible Mechanisms

| Direct Chemical Oxidation
eg,Crdih+0,+30* | Ui \

11 Oxidation via Direct Microbial Metabolism | vy
Cr(III) + microorganisms + O, 5

111 Oxidation via Co-metabolism

T. ferrooxidans
T. thiooxidans
FeS,, FeS

IV Mobilization via Interactions with Microbial Metabolites

Fe’*, SO, Cr(OH),, + Fe** /SO,>

Mn**, Mn** Cr(OH),,, + MnO, / MnOOH

Increased
H* Cr(OH),, + H" — CrOH*" ' ®  solubility




Coupled Biotic/Abiotic Processes for Cr(I1I) Oxidation

0, Mn(II) Cr(VID)
H20 Mn-

. Crd11

. putida  QOxides r(1th

*Pseudomonas putida was obtained from ATCC

*Microbial experiments were conducted in modified LEP medium with
10mM HEPES buffer (pH 7) in a shaker at 150 rpm at 26°C

*Cell density (OD600): using spectrophotometric method at 600 nm
*Mn oxides: modified LBB assay (Boogerd and de Vrind, 1987)

*Cr(VI): measured using diphenyl carbazide colorimetric
method after filtration through 0.2 pym membrane filters.

*Total soluble Mn and Cr: measured with ICP.
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Cr(VI), mg/kg

Long term stability of Cr in soils
following H,S treatment

120;

20 Contaminated soil sample from the 100K

Geeeees e o o o Area at the Hanford Site was treated with

time (days) diluted hydrogen sulfide gas.
Chromium Reoxidation Test

] Original Cr(VI) concentration: 110 mg/kg
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. U(VI) could coexist with high concentration of sulfide (400mM) in
anoxic see water (Anderson et al., 1989)

. U(VI) was not reduced by sulfide in bicarbonate (30 mM) buffered
solution (Lovley et al., 1991).

. Uranyl (CO,-free) was precipitated by 800 mg/L. H,S at pH 6.0-6.5
(Kochenov et al., 1977).

. Uranyl was reduced to uraninite by 500 mM sulfide in the anoxic
system with P, = 0.15 atm (Beyenal et al., 2004).

A better understanding of the effect of carbonate on
U(VI) reduction by sulfide is needed.

U0,(CO,),* - » CO,*
; |
UO,+S - H,S OH" (pH)

Reaction Products I /

UO,OH*



MOlar ratiO Of [U(VI)]reduced to [SZ-] oxidized
(pH = 6.89; [CO,¥], = 4.0 mM)
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Z[U(VID)-hydroxyl species]( (M)
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Initial U(VI) reduction rate (uM/min)
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Technetium Sulfide Chemistry

* Investigation the pertechnetate-sulfide
chemistry in aqueous solution
— Controlled pH, O,, ionic strength
— Product determination

— Tc immobilization (precipitation/colloid
formation)

— Reaction kinetics and stoichiometry
determination



Pertechnetate-sulfide chemistry in aqueous media

In acidic solution:
2TcO,+7H,S+2H—— Tc,S;,+8 H,0O (Equation 1)

In basic solution:
TcO, + S Tc(S)04/TcS, (Equation 2)
2 TcO, +7HS + H,O——>Tc,S, + 9 OH  (Equation 3)

2 TcO, +7 S% +8H,0—>Tc,S, + 16 OH- (Equation 4)



Kinetics studies under pH 9 anaerobic conditions
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Kinetics studies under pH 4 aerobic conditions

IN[TcO,](uM)
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Sample characterization

XANES & EXAFS

Elemental analysis

Mole ratio of Suggested
0 (0)
Sample S (%) Te (%) S/Tc formula
Producj[ from pH 4 45.585 39.95 3.53 Te,S,
aerobic solution
Product from pH 9 45 38 40.5 3.54 Tc,S,
anaerobic solution
2?2?

TcO,+3e+4H =TcO, (s) + 2H,0




Reductive Cr(VI) immobilization could be achieved by ISGR
treatment. Reoxidation of Cr(III) is possible by biogenic Mn-
oxides. A thorough evaluation under a wide variety of
environmental conditions is needed.

Reductive immobilization of U(VI) takes place by H,S under
anoxic env1r0nments, and the rate depends on pH and [CO,*
liotar It is 2 [U(VI)-hydroxyl complex], not total [U(VI)], that
determines the rate of U(VI) reduction at various pH and
[CO,* ltotarr Reduction rates could be predicted through
spec1at10n calculation. U(VI) reduction on FeS surfaces takes
place through a two-step process.

Te(VII) could be immobilized by H,S treatment, with Tc,S,
being the product. Research is under way to understand the
reaction mechanism.






