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HLW Tank Example (Hanford)

Figure 2-3. Cross-Section of Single-Shell Tanks.
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Site Specific Structural Problems

Large steel tanks containing radioactive waste are susceptible
to extensive cracking caused by ground settlement,
earthquakes, or accidents.

Nominally, 250 High Level Waste (HLW) Storage Tanks (some
operating since 1950s)

— 304L or 347SS — INEEL
Wall thickness (t) range from 4.5 to 8.0 mm
— Carbon steel: A285Gr B, A516, A537 — Savannah River, Richland

Multiple designs t=12.7 mm for Type 1
t=15.9 mm for Type 2
t=12.7 to 22.2 mm for Type 3

e Environment:
— Acid in SS tanks
— Alkaline in carbon steel tanks
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Site Specific Structural Problems
(Continued)

* Loading condition
— Normal operating — including waste retrieval
— Design accident — earthquake, fluid sloshing
» Degradation (cracks and thickness reduction)
— Corrosion — local/general
— SCC

 Consequences of a Failure (only as related to fracture
technology)

— Safety of Workers and Public
— Environmental
— Adverse Publicity / Fear



Problem Complexity
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Scientific Concepts and Objectives

Develop and validate fracture mechanics models to

predict the fracture process for ductile materials In
engineered structures.

 Initiation of crack growth
e Stable crack growth
— Penetration of wall thickness
— Growth in length (2c¢) direction
e Unstable cleavage cracking
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Innovative Aspects
The People coupled with the Approach

« E.D. Steffler, INL Experimental/Numerical

« W.R. Lloyd, INL Experimental

 F.A. McClintock, MIT Analytical

 R. L. Williamson, INL Numerical (Commercial Code)
« M. M. Rashid, UC Davis Numerical (Research Code)

- Mili Selimotic, UC Davis Graduate Student
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Analytical Objectives

In the analytical studies of this problem, we are focusing
on two limiting conditions:

1. The plane strain growth of cracks through the
wall of the tank.

2. The lateral growth of through-cracks for many

Plate thicknesses in generalized plane stress.
Generalized plane stress means negligible stress in the thickness
direction, but in ductile metals it means variable plate thickness from

earlier crack growth.)

In both cases, we are considering the statistics of
predicting rare transitions from the typical ductile, dimple
mode of crack growth to the brittle, cleavage mode,
using data from lower temperature tests.
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Crack Front Growih stage B->C
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The Mechanics of Plane Strain Ductile Crack Growth
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Problem Breakdown

Tank Wall
K-Section

Stress Corrosion Part

Through Crack (PTC)
Initial Condition




Surface Crack Specimen Geometries INL
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Microtopographic Analysis — Capabilities Overview

» Any ductile fracture process/event
can be analyzed — test specimen or
real structure

« All data collection and analyses
occur AFTER the crack growth has
happened

* Micron spatial resolution

o All ductile fracture CTRFs can be
extracted — CTOD, CTOA, etc.

References:

* Lloyd, W.R., “Microtopography for ductile
fracture process characterization — Part 1.
Theory and methodology,” Engrg. Frac. Mech.
70, pp.387-401, 2003.

* Lloyd, W.R. and McClintock, F.A.,
“Microtopography for ductile fracture process
characterization — Part 2: Application for CTOA
analysis,” Engrg. Frac. Mech. 70, pp.403-415,

2003.
Microtopography scanning system collecting data fromone of < Lloyd, W.R. et a., Microtopographic Analysis
two opposing fracture surfaces from a large SE(B)-type of Part-Through Crack Growth in Alloy 304L
specimen (B = 50 mm). Pate-type Tension Specimens, INEEL/EXT-

03-00495, 2003.
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Whole-field Analysis of | ncremental Crack Growth
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» Contour lines represent incremental crack front positions at crack tip opening increments of 0.5
mm* (overlaid on actual fracture surface picture)

* Purple dye region shows crack front position at point of through-thickness penetration, and
confirms accuracy of microtopographic analysis (note excellent correlation of crack front position
contour with dye-stained area boundary)

* Fracture surface contrast change marks end of ductile tearing during test — again note excellent
correlation of microtopographic prediction of crack tip position

 Gradient analysis of these data provide a whole-field directional CTOA map
*|ast contour increment is 0.2 mm, not 0.5, corresponding to CTOD = 4.2 mm
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representation of ductile surface crack
growth, including all parameters at every
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Computational Modeling of Ductile Fracture:
Finite Element Node Release

RERER

 Crack extension is achieved by node
release along a predefined path

» Release is governed by the Crack
Tip Opening Angle (CTOA) at a
prescribed distance from the tip
along the crack flank

27.5 mm

« Initial conceptual testing and model
verification has been performed for a
simple plane strain extension
specimen 5

l ,1 v

free
4 mm

free
free

6 mm |
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Node Release Model: Investigation of Key
Numerical Parameters

 Key numerical parameters have been investigated by
sensitivity study and comparison to analytical solutions

- mesh size (h) near crack extension region

- local CTOA geometry (L, d) | "

- traction reduction rate at node release L JL LI
!

- debond tolerance

 Investigation has provided improved understanding of:
- tradeoffs between numerical accuracy and efficiency

- appropriate numerical parameters to achieve reliable
solutions
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Node Release Model: Verification by Comparison
to Analytical Solution
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Node Release Model: Application to
Isotropic Hardening Material

316 Stainless Steel
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Node Release Model: Developing Improved
Predictive Capability

Valid annular zone

e From SLFM (McClintock)

CTOA =f (q,, s/2K) Us
ially
e ABAQUS user subroutines, . constant
currently under development : i Js
CTOA 'A' i n/2k

and testing, will permit control
of crack extension parameters \ da, (<0)
(e.g. CTOA) based on crack tip  vaig
driving parameters (€.9., ¢, S,) ¥
at locations distant from the

crack tip so finite element size S
and material inhomogeneity fracture process zone

have negligible effect.
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Computational Modeling of Ductile Fracture:
Exclusion Region Theory

exclusion region

N
Fﬂ
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A separation function ®(y) is used to define the fracture criterion:

F, _ <F,> (N
3 '[ ‘oﬁdav Ffz:—v F”:'[M't(é’)adé’
za ER Sup {FH} v

D(y) =

Crack advances so that ®(») < ®_, and in the direction » that maxi-
mizes O(y).



Implementation of Exclusion Region Theory \L
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The separation functional form can be anything while the critical
parameter is a material dependent parameter experimentally
determined.

Provided with fully functional 2-D research code.

Working to implement approach in 3-D to adequately address
remaining challenges.
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Figure 10 Deformed mesh from a 2-D FEFRAC
duectile crack growth analysis. This analysis

corresponds to a compact-tension test of A710 steel
conducted at the INEEL.

INL



100.00

80.00

D
o
o)
o

CTOA (deg)
S
8

20.00

.00

0.00 050 1.00 1.50 2.00 2.50 3.00 3.50

FEM-TS/YS=1.0
FEM-TS/YS =14

SLFM - TS/¥YS=1.0
EXP-TS/YS=23

FEM-TS/YS=23 |

Crack growth - da {(mm)

INL



Future Scientific Directions and Plans Nt

e Continue to use concepts of slip-line fracture mechanics
(SLFM) in FEM setting - ductile crack growth criterion
guide laboratory experimentation.

 Use the ER theory of fracture with SLFM motivated
separation function to capture complex fracture behavior
of real ductile metals.

o Complete work on powerful, fully 3-D computational
platform - complex nonlinear problems involving crack
extension. Two major enabling innovations unique to this
research program.

« EXxploit the innovative measurement and diagnostic
techniques developed at the INL to validate ER-based
fracture model. This approach will avoid simplifying
Idealizations that characterize other research efforts in
ductile fracture, and which substantially diminish their
technological usefulness.
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In Conclusion...

We have team members that:
« understand the technical challenges

 have a great deal of interest in working towards
viable solutions to the real-world application

* have worked on related problems (structural
Integrity, lifetime extension, novel numerical
approach)

* have a great deal of relevant experience

Our team iIs working at the leading edge of
ductile fracture predictive technology.
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