Thermodynamics of the Volatilization of Actinide Metals in the High-Temperature Treatment of Radioactive Wastes

Martyn G. Adamson, Bartley B. Ebbinghaus, and Darryl G. Spurlock, Lawrence Livermore National Laboratory, Livermore, CA 94550

Donald R. Olander and James C. Cole, University of California, Berkeley, CA 94720

Intro/work to be performed

- In this project, initiated in October 1997, we are performing detailed studies of the high-temperature behavior of actinide elements (U, Pu, Np, etc.) under conditions relevant to the thermal treatment of actinide-containing wastes and residues.

- The proposed work is in a combination of experimental measurements and thermodynamic modeling:
 - transpiration measurements to determine the extent of volatilization (vapor pressure) of Pu, Np, and possibly Am, when their respective oxides are heated to 600 – 1500 °C under oxidizing gases (O2, H2O) in the presence of chlorine (Cl2 or HCl).
 - thermal gradient transport experiments to determine the extent of volatilization of uranium oxide when it is heated to 500-1200 °C under simulated pyrolysis (reducing) conditions.
 - Other thermal processes:
 - determination of Pu volatility and volatilization of surplus Pu oxide

Intro/goals, objectives, and work plan

- The general objective of this work is to develop a basic understanding of the thermodynamics of actinide volatilization and partitioning/speciation behavior in the thermal processes that are central to DOE/EM’s mixed waste treatment program.

- For all of the actinides (An = Pu, Np, Am), the key thermodynamic parameters for the gaseous species AnO2Cl, AnO2F(OH), AnO2F, AnO2Cl(F,H)(OH), and AnO2(OF,H)2, where An = Np and Am, have been estimated.

Intro/relevance to DOE/EM problems

Problem: “Export-free destruction of organic (mixed) wastes”

Examples of MN thermal treatment processes presently under consideration:

- conventional incineration
- plasma arc technologies
- pyrolysis
- thermal description
- pyrolysis technologies (incl. Molten Metal)
- incineration technology (H20)
- non-thermal oxidation (N20)

Other thermal processes:

- transpiration measurement (vapor pressure) of Pu, Np, and possibly Am, when their respective oxides are heated to 600 – 1500 °C under oxidizing gases (O2, H2O) in the presence of chlorine (Cl2 or HCl).

- thermal gradient transport experiments to determine the extent of volatilization of uranium oxide when it is heated to 500-1200 °C under simulated pyrolysis (reducing) conditions.

- estimation of thermodynamic data for “unknown” vapor species

- pyrolysis, reducing conditions

- incineration technology (H20)

- non-thermal oxidation (N20)

Methods

- Determination of temperature and pressure conditions for the vapor pressure measurements (An = Pu, Np, Am)

Reactions, Species Responsible for Enhanced Actinide Volatility

Oxidizing atmospheres:

- PuO2(s) + 3/2O2(g) = PuO3(s) + 1/2O2(g)
- PuO2(s) + H2O(l) = PuO3(s) + 1/2O2(g) + H2(g)

Reducing atmospheres:

- UO2(s) + H2(g) = UO(s) + H2O(g)
- UO2Cl2(s) + H2(g) = UO2Cl(g) + H2O(g)
- UO2ClF(s) + H2O(g) = UO2ClF(g) + H2O(g)
- UO2F2(s) + H2O(g) = UO2F2(g) + H2O(g)
- UO2F2Cl(s) + H2(g) = UO2F2Cl(g) + H2(g)

Progress

- Apparatus for U transport studies under reducing conditions designed, built and currently being activated
- Simulated organic wastes containing U have been prepared
- An alternative location for conducting the planned Pu volatility experiments has been secured, and the necessary equipment (glove box, furnace, controllers, etc.) has been specified and ordered
- A post-doctoral position has been offered to a PhD chemist who has experience with transactinide element speciation
- Key thermodynamic parameters for the gaseous species AnO2Cl, AnO2F(OH), AnO2F, and AnO2Cl(F,H)(OH), where An = Np and Am, and UO2Cl2(s), UO2F2(s), and UO2F2Cl(s), have been estimated.

Two manuscripts are being prepared for the Journal of Nuclear Materials.