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Approach

Use stable, inorganic, semiconductor nanoclusters with tunable
bandgaps to oxidize organic chemicals using sunlight.
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Advantages of Approach

• The light absorption and energy levels of the semiconductor valence and
conduction bands can be adjusted in a single material by changing the size
(quantum confinement effect).

• A covalent semiconductor material with excellent photostability can be
selected (e.g. MoS2).

• Our synthesis allows easy chemical modification of the nanocluster surface
properties (e.g. deposition of a metal).

• Small size of nanocluster vastly reduces electron-hole recombination rate and
undesired light scattering.

• Nanoclusters are easily deposited on bulk support materials from a dispersed
liquid phase.

• Both dispersed and supported nanoclusters can be studied, allowing
complete characterization of the photocatalyst microstructure.
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Research Issues

Our project addresses five important issues in achieving
economically viable solar detoxification:

1) the efficient conversion of sunlight to electron-hole pairs

2) the surface trapping of electrons and holes before 
recombination

3) photostability of the catalyst

4) short metal-metal bond distances in the lattice

5) the use of cheap, chemically-stable, environmentally
benign materials
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Program Highlights

• Demonstrated the photo-oxidation of an organic (alkyl chloride) using dispersed MoS2
nanoclusters and low intensity visible light.

• Using liquid chromatography we showed that the MoS2 nanoclusters were not altered
chemically or photodegraded during this photodestruction process.

• Using time-resolved photoluminsence spectroscopy we showed that electron transfer rates
from nanosize MoS2 to an organic (bipyridine) were vastly accelerated as the nanoclusters
were made smaller (larger bandgap).

• Based upon measured electron transfer rates we determined that polar solvents such as
water accelerate the transfer kinetics.  This means photo-redox reactions will proceed
fastest in polar solvents-just as desired.

• Deposited nanosize MoS2 onto bulk TiO2 powder and demonstrated that facile destruction
of phenol occurred using only visible light.

• Established the optimum loading of nanosize MoS2 onto TiO2 occurs near 2%, where the
phenol oxidation rate is enhanced ~2-fold compared to TiO2 alone.

• Demonstrated destruction of phenol and pentachlorophenol using both dispersed and
supported nanosize MoS2 and showed that the optimum bandedge absorbance is ~550 nm
(size = 4.5 nm) for dispersed and ~700 nm (size = 8 nm) for supported nanoclusters.
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Nanocluster Size Determines the Optical
Absorption (Color)
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Our Approach - Inverse Micellar
Synthesis & Processing
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Characterization Vital to Improvements in
Photocatalytic Activity

Materials must be nanocrystallline
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And reasonably monodisperse (so the optical/electronic properties are predictable)
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Liquid Chromatography is Used to Follow
the Kinetics of Photo-Redox Reactions
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Basic Concept -

• Chemicals (and dispersed nanoclusters)
travel through a porous medium which
separates them and they elute at various
times.

• The amount of chemical in each elution
peak is measured using an absorbance or
fluorescence detector and compared to
known amounts of the same chemical.

• Intermediate break-down products are
also identified.

• The size of the elution peak at a chosen
absorbance wavelength gives the
amounts of each chemical.

• The stability of the nanosize photocatalyst
can be determined from changes in the
complete absorbance spectrum at its
elution peak.

Example - Destruction of an Alkyl
Chloride Organic Impurity using
dispersed nanosize (d = 3 nm) MoS 2.
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t = 4.15 min, MoS2 nanocluster elution peak absorbance spectra -

• No reduction in optical abosrbance, nanocluster concentration, or photocatalytic
activity were observed.
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Tunable Bandgap Nanosize Semiconductors
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• Due to quantum confinement
of the carriers (electrons and
holes) the bandgap of
sufficiently small
semiconductors depends on
the size, as does the potential
energy of the valence and
conduction bands.

• The optical absorbance of
nanosize MoS2 is blue-shifted
relative to the bulk.

• Can adjust light absorption
properties by changing the
size!



Photocatalysis Poster _Wilcoxon/bmf/7-16-98

The Photoluminescence (PL) of nanosize
MoS2 also depends on size
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• Can use PL to monitor e-h transfer rates
to organic molecules
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MoS2 Cluster Size Determines Amount of
Sunlight Absorbed
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• Both light absorbance and redox potentials are chosen to optimize photooxidation rate.

• Mixtures of nanoclusters can be selected to span a range of absorbance and
photooxidation potentials for a variety of chemicals.
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MoS2, Like TiO 2 Has Exceptional
Photostability
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• Kinetic stability occurs because both valence and conduction bands are localized on
the metal, so carrier excitation doesn’t weaken any chemical bonds.



Photocatalysis Poster _Wilcoxon/bmf/7-16-98

MoS2 Layered Structure Allows Strong Binding
of Organic Chemicals to Mo Edge Sites
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• If electron transfer (E.T.) to bpy occurs, the
rate of carrier recombination on the MoS2
nanocluster which produces visible PL is
reduced.

• The more difficult a material is to reduce,
the slower the E.T. rate (e.g.
tetramethymethyl bpy vs. bpy)

• By following the kinetics of decay of the
MoS2 PL peak we can obtain these E.T.
rates and also estimate the conduction
band potential.

• Quantum confinement shifts the
conduction band potential to more
negative values and the valence band
potential to more positive values as the
bandgap opens up with decreasing size.

• This increasing bandgap provides the
driving force for the photoredox reaction
and increases destruction of the organic.

• A dramatic increase in the PL decay rate
means a lot of E.T. is occurring!

• Similar considerations apply to hole
transfer (oxidation) to an organic.
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Effect of Size and Substrate Redox Potential
on Electron Transfer (E.T.)
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• The decay of the PL can be roughly described by,

• Larger nanoclusters absorb more visible light but have less driving force (free
energy) for E. T.

• More difficult-to-reduce substrates (e.g. TMB vs. BPY), have slower kinetics.
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• Smaller clusters (wider bandgap) absorb less light but can reduce a wider variety of
organics at comparable reaction rates.
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Effect of Solvent Polarity and Cluster Size on
Electron Transfer (E.T.)
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1) Use Benzene (non-
polar)/Acetonitrile (polar)
mixture.

2) Study two sizes of MoS2
(with increasingly negative
reduction potentials).

3) Study two organics (with
increasingly negative redox
potentials).

• Wide bandgap (bandege ~450 nm), d = 3.0 nm MoS2 has sufficient overpotential to reduce bpy
at a rate independent of solvent polarity.  However, this rate slows down considerably with
decreasing solvent polarity when the substrate (tmb) is more difficult-to-reduce.

• Larger, d = 4.5 nm MoS2 (bandedge ~ 550 nm) only has enough overpotential to photoreduce
bpy rapidly at high solvent polarities.
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Our Photocatalytic Reactor
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Significance -

• First photooxidation of phenol using only visible light and an entirely inorganic,
photostable catalyst.
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Photocatalysis of Phenol Using Nanosize
MoS2 Supported on TiO 2 Powder
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• Light Absorbance by MoS2.

• Carrier transfer between MoS2 and TiO2 support decreases recombination rate and
increases photooxidation rate of organic.
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Future Research Directions

• Improve nanocluster/support interactions by heat treatments after
deposition of nanoclusters to further improve e-h transfer rates.

• Examine nanocluster systems with mixed sizes (bandedges and
potentials) to optimize solar absorbance while still allowing a
sufficient driving force for the photooxidation process.

• Examine the photooxidation of long-lived organics such as
pesticides, and polycyclic aromatics using nanosize MoS2 to
determine reaction kinetics and final breakdown products.

• Investigate alternative, highly stable nanocluster catalysts (RuS2,
WS2) and compare with MoS2.

• Develop better understanding of the factors that influence electron-
hole transfer kinetics.
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Conclusions

• Adjustment of the bandgap of nanosize MoS2 can be used to tune
the valence and conduction band potentials to optimize the
destruction of an organic.

• Polar solvents like water or acetonitrile provide the most favorable
electron transfer rates.

• Fully dispersed nanosize MoS2 was shown to catalyze the
destruction of an alkyl chloride using only visible light while
maintaining its structure, catalytic activity, and optical absorbance
properties.

• Both dispersed and supported nanoclusters of MoS2 were shown to
destroy a common organic pollutant, phenol, using only visible light.
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