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Vitrifying High Level Waste in an Iron Phosphate Host Matrix 
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Scientific Rationale
Certain high level wastes (HLW) in the U.S. contain components such as

phosphates and halides which make them poorly suited  for disposal in
borosilicate glasses. Current plans call for vitrifying even these problematic
waste feeds in borosilicate glasses by pre-treating/diluting  the original waste
feed to compensate for the incompatibility.  However, these pre-treatment
processes and larger waste volumes can add billions of dollars to the nuclear
waste disposal effort. Such additional costs may be avoided by developing a
small number of alternative host matrices which are better suited for vitrifying
those waste feeds which are incompatible with borosilicate glasses. Iron
phosphate glasses appear to be a technically feasible alternative to borosilicate
glasses for vitrifying several HLWs. The objective of this research is to gather
more information on the binary iron-phosphate glasses and simulated iron
phosphate waste forms so that a comprehensive scientific assessment can be
made of their usefulness in nuclear waste disposal.   
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Iron Phosphate Glasses at a Glance

Batch Composition 40Fe2O3-60P2O5 (mol%)

Meting Conditions 1-2 hrs. @ 1000-1100EC

Chemical Durabilitya 10-9 g/cm2/min

Thermal Expansion Coefficient 1×10-5 EC-1

Density 3 g/cm3

Glass Transition Temperature 500EC

a From weight loss in distilled water @90EC over 16 days.
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Figure. Dissolution rate
(@90EC in distilled water
for 16 days) of several
iron phosphate waste
forms containing sludges
from Hanford. C-112, B-110
and T-111 are waste tank
designations. The dissolution
rate of an environmental
assessment standard glass
used at DWPF  is also
shown.

Iron Phosphate Waste Forms Containing Up to 50 wt% of
Certain HLWs Possess Excellent Chemical Durability. 
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Iron Phosphate Glass is a 
Better Host Matrix for Vitrifying
Selected High Level Nuclear
Wastes. 

Figure: A comparison of iron
phosphate and borosilicate waste
forms containing one metric ton of
sludge from tank C-112 from Hanford.
A 2 wt% solubility limit of P2O5 in
borosilicate glasses and a vitrification
cost of $1M/m3 is assumed.
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Iron Phosphate Waste Forms - Selected Properties  

Table. Selected properties of three iron phosphate waste forms containing 30wt% waste
from tanks B-110, C-112, and T-111 from Hanford site.

Waste Form Log  DR
a

(g/cm2/min)
Density
(g/cm3)

Ts
b(EC) Tc

c(EC) ad

 (×10-7/EC)

B-110 -8.35 3.18 542 612 136.4

C-112 -8.56 3.36 571 642 132.5

T-111 -8.97 3.31 547 629 94.3
a Measured from weight loss in distilled water @ 90EC for 16 days.
b Softening temperature. c Crystallization temperature. d Thermal expansion coefficient. 

A sample
of C-112
waste glass
mentioned
above.

Contact us for a 
 sample
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Objectives of this research project are to investigate...

 ó  Ideal compositions and processing conditions

 ó  Chemical durability
 ó  Glass forming and crystallization characteristics
 ó  Redox equilibria
 ó  Atomic structure
 ó  Glass manufacturing procedures
 ó  Other properties such as density, electrical conductivity, 

and Thermal expansion coefficient 

...of iron phosphate glasses and their  simulated waste forms so that a
comprehensive scientific assessment can be made of their usefulness in
nuclear waste disposal.
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Experimental Techniques

g Glass Melting
 Batches are melted in air or under controlled atmospheres for 1 to 24 hrs.

at temperatures ranging from 950 to 1450 EC

g Glass Manufacturing Procedures
Investigate suitable refractories and melting techniques

  
g Chemical Durability Measurements

 Dissolution rate is obtained by measuring the weight loss of 1x1x1 cm
samples in distilled water @90EC over 16 days

g Differential Thermal Analysis (DTA)
Glass forming and crystallization characteristics

g X-Ray Diffraction
Identification of products of forced devitrification
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Experimental Techniques Contd.

g Mössbauer Spectroscopy
Redox equilibria and coordination and bonding of iron ions

g X-ray Photoelectron Spectroscopy (XPS)
Bonding of oxygen ions

g Raman and Infra-Red Spectroscopy
Phosphorus-Oxygen network

g X-Ray Absorption Spectroscopy (EXAFS/XANES)
Spacial arrangement of atoms/short range order

g Neutron and High Energy X-Ray Scattering
Spacial arrangement of atoms/long range order

g Electron Spin Resonance Spectroscopy (ESR)
Iron-Oxygen bonding

UMR



15% Cs2O

 

 

∆T
, E

xo

Crystallization

Glass
Transition

Base Glass

 

  

400 500 600 700 800 900

10% UO2

 Temperature (C)

  

Figure. DTA thermograms for three iron
phosphate glasses.

Glass Forming and Crystallization
Characteristics

Glass transition temperature ~ 550°C.

Crystallizes around 625°C.

Most waste components such as UO2, Bi2O3, SrO,
and MoO3 suppress crystallization and enhance
glass formation.

Waste components such as Cs2O and Na2O tend to
produce sharper crystallization peaks but they do
not adversely lower the glass transition and
crystallization temperatures.
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Figure. Corrosion rate of three commercial  refractories in
four iron phosphate melts. Base glass composition is 
40Fe2O3-60P2O5 (mol%). T-111 and C-112 are waste
compositions from Hanford.  TFB is an average waste
composition from tank farm B at Hanford. The corrosion
rate labeled DWPF was used in designing the refractory
lining in the DWPF melter at the Savannah River site. Tests
were conducted at 1200, 1100, 1200, and 1000EC for Base,
T-111, C112, and TFB melts, respectively.

Glass Manufacturing
Suitable Refractories

Several commercial refractories can be
used to melt iron phosphate waste
forms. 

Chrome refractories appear to be
the best suited for iron phosphate
melts.
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Figure. Room temperature Mössbauer spectrum
of an iron phosphate glass of batch composition
40Fe2O3-60P2O5 (mol%) melted at 1150EC
clearly shows the presence of both Fe(II) and
Fe(III).
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Figure. Irrespective of the iron valence in the
batch, the Fe(II) fraction in the glass is in the
0.2-0.3 range when  melted in air at ~1250EC.
Fe/P ratio is 0.67 for samples shown above.

 

Redox Equilibria in Binary Iron Phosphate Glasses

When melted in air at ~1250EC for 1-2 hrs., iron phosphate glasses reach a redox equilibria
corresponding to a Fe(II) fraction of 0.2-0.3. The Fe(II) fraction can be increased either by
increasing the melting temperature or by melting in a reducing atmosphere.  Glass forming
ability of melts decreases rapidly if the Fe(II) fraction is forced above 0.5.
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Figure. Dependence of the hyperfine para-
meters on the type of waste component in
iron phosphate glasses. The waste component
content in each glasses is 10 mol%.

Structural Features-Iron Coordination

Table. Mössbauer hyperfine parameters obtained at
295 K for an iron phosphate glass of batch
composition  40Fe2O3-60P2O5 (mol%).

Parameter Fe2+ Fe3+

Isomer shift, mm/s 1.01 0.42

Quadrupole splitting, mm/s 2.63 0.83

Average coordination of iron ions is distorted
octahedral. However, some tetrahedrally coor-
dinated iron ions can not be ruled out. This
observation is supported by EXAFS studies.

Hyperfine parameters are independent of the type
(see Figure on right) and the concentration of waste
components indicating that the local environment
around iron ions is not affected by the addition of
waste components.
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Figure. Dependence of iron valence on the waste
component (MO) content in (100-x)(40Fe2O3-60P2O5)-
x(MO) glasses melted in air.

 Valence State of Iron Ions in Iron Phosphate Glasses Containing
Common Nuclear Waste Components.

 

 

Most common nuclear waste
components do not adversely affect
the redox equilibria in iron phosphate
glasses.
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Figure. O1s XPS spectra for iron phosphate
glasses containing UO2 or Na2O. Base glass
composition is 31Fe3O4-69P2O5 (mol%). 

Structural Features - Oxygen Bonding

The poor chemical durability of non-iron-containing
phosphate glasses can be attributed to the abundance
of bridging oxygens (BOs) which are linked via
easily hydrated -P-O-P- links. 

In contrast, X-ray photoelectron spectra show that
only a minority, about 26%, of oxygen ions in iron
phosphate glasses are bridging, see Figure on right.
This may be basis for the excellent chemical
durability of iron phosphate glasses.

None of the common waste components such as
Cs2O, UO2, Bi2O3, and Na2O increase the fraction
of BOs above 35%.
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Figure. Crystal structure of Fe3(P2O7)2. 
Purple - Fe(III)O6 octahedra
Red - Fe(II)O6 trigonal prisms
Green/Yellow - PO4 tetrahedra

Structural Features 

Several spectroscopic techniques suggest that the
atomic structure of iron phosphate glasses may share
short range similarities with that of Fe3(P2O7)2, the
compound which crystallizes when a binary iron
phosphate glass of approximate batch composition
40Fe2O3-60P2O5 (mol%) is heat treated at ~600EC for
24h. 

The structure of Fe3(P2O7)2 is characterized by:

g All phosphorus ions taking part in P2O7
4- groups.

g Fe(II) and Fe(III) in six-fold coordination
    with surrounding oxygen ions.

g Fe-O clusters interconnected via P2O7
4- groups.

g Only a small fraction, 14%, of bridging oxygens.
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Figure. Raman spectra of iron phosphate
glasses containing UO2 and Cs2O. Base glass
composition is 40Fe2O3-60P2O5 (mol%).

Structural Features
Phosphorus - Oxygen Network

Raman spectra indicate that the P-O network is
dominated by P2O7

4- dimer units. 

Addition of waste components does not
appreciably disturb the P-O network,
see Figure.
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Figure.  Fourier transform (FT) of k3x(k)
from EXAFS data for iron phosphate glasses
containing waste components. Base glass
composition is 40Fe2O3-60P2O5 (mol%).

Structural Features
Local Environment Around Iron Ions 

Fe K-edge EXAFS data suggest that the iron ions are
5-6 coordinated with near neighbor oxygens.

Major features in the Fourier transform (FT) of k3x(k)
from EXAFS data do not change when waste
components are added, see Figure. 

Waste elements appear to be excluded from the
near neighborhood of iron ions.
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Figure. Total correlation functions from neutron and high energy
X-ray scattering data for several iron phosphate glasses containing
UO2. Base glass composition is 40Fe2O3-60P2O5 (mol%).

Structural Features
Long Range Structure

Neutron and High Energy X-ray
scattering data strongly suggests that
the waste elements are situated away
from FeO6 and PO4 polyhedra. 

For example, two new peaks corres-
ponding to interatomic distances of
2.3 and 3.7 Å appear in T(r) plots,
see Figure, as UO2 is added to the
base glass. The peak at 2.3Å is due
to U-O pairs.  The peak at 3.7 Å is
most likely due to U-P and/or U-Fe
pairs suggesting that U ions are far
removed from Fe and P ions.
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Figure. The structure of Fe3(P2O7)2 showing voids,
purple spheres, which are capable of hosting a large
atom such as Cs.

Structural Features
Where are the Waste Elements?

Fe3(P2O7)2, which share structural features
with iron phosphate glasses, has voids
capable of hosting large ions such as Cs, see
Figure.   

Because iron phosphate glasses are less dense
than their crystallized samples, it is
reasonable to expect interstitial “voids” in the
glass structure as well. 

Addition of waste elements does not
extensively disturb the Fe-P-O network in
iron phosphate glasses suggesting that the
waste elements may occupy the above
mentioned empty spaces in the Fe-P-O
network.
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Summary: Iron Phosphate Waste Forms

ó  Host up to 50 wt% HLWs which are high in phosphates, halides, and
heavy metals like U, Cs, Pu, Sr, and Bi. Use of iron phosphate glasses
to vitrify certain HLWs which are poorly suited for borosilicate glasses
may result in much smaller waste volumes.

ó  May be melted at 950-1200 EC in 1-2 hrs. using commercially
available refractories.

ó  Physical and chemical properties such as the chemical durability and
glass transition temperature meet current DOE standards. 

ó  Waste elements appear to occupy “voids” in the host matrix structure
without adversely disturbing the  Fe-O-P network.
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