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1996). A consequence of a siructure of the frst ype whee particle charge may ectrophoretic Mobility H The potential for biological degradation of citric acid presents a problem when conducting sorption experiments, effect of uranyl degradation occurred within a day. Replicating experiments remains the best way to check for potential
be net positive, but with a significant population of negatively charged carboxylic especially where long equilibration times are involved. Since *“C labeled citrate was used in the experiments, degradation effects in abiotic experiments. Even when precautions are taken to maintain sterile
groups, could be that increases in mnlc strength would lower the free energy of The electrophoretic mobility of the goethite with and without citrate was studied to see 14, 100 conditions, the possibility of microbial degradation can not be ignored.
h UO Whether th il ibed 1 and citrate was measured as the ~“C content of a sample, loss of volatile 14C degradation products would be N a8 A 8 A l N i N N
reacnun with a cationic specles( 27). e:)le;st Ellsclg‘t’earlglr:]?%r:):‘sd heas; bizﬁloﬁe if the particle surface charge was qualitatively consistent with the sorption results and misinterpreted as citrate sorption. Conversion to undetected, non-volatile species will affect the thermodyanmic [iDN & = L N _ The presence of goethite seems to lower the rate of degradation of citrate, possibly due to sorption of
e project gl proton stoichiometry.  The results shown below are for short equilibration times, but the 2 interpretation of solid - solution partitioning of citrate. Therefore, evidence for degradation during the 80 + A A citrate to the surface.
effect 91 citrate is clearly seen. (Inlerpret_atlcn of the mobility is not since was and steps were taken to maintain sterile conditions. E A - Role of microorganisms in the fate of uranyl:
derivation of the zeta potential from theoretical arguments is based on Stokes Law and s s s 7 s o woowow The fact that citrate can be readily degraded is also a potentially useful attribute with respect to its use for A ocitrate 10uM
Relevance the assumption that particles are spherical.) of metal soils and g The is likely to be affected by whether 60 1+ Citrate-uranyl complex degradation:
Citrate reduces the surface charge over the pH range where citrate adsorption is cirate is adsorbed or bound to metals. Similarly, the bioavailabity of metal-bound cirate s likely o nfluence m citrate 10uM Pseudomonas fluorescens, a bacteria capable of degrading citrate and some metal-citrate complexes
Metal-complexing ligands affect the solid-solution partitioning of metals. This significant. This is consistent with the formation of a negatively charged, covalently the speciation and partitioning of the metal. A U=1uM M (Joshi-Tope et al., 1995) has Irecenlly been ghown 0 bg ableg(o degrade the uranyl-citrate comple?( (see
il Elaygrole |r;'meva r:ranspon gnd bloava;‘abllltyhl? aqufatlc systemsiand %:]n be bonded citrate molecule. One feature that is surprising is that with increasing citrate o 3s X 40 + acC Eral';ezluM fig). It is not known at this time if the complex itself is metabolized or if dissociation of the complex and
33'.'@?;'% g:guﬁlévfa't;“ CE AL Dl A RO R G concentration, citrate continues to reduce the surface charge up to an apparent surface Cim SORPTION EXPERIMENTS: release of free citrate is required.
The nature of metal-ligand surface complexes will be related to the degree to coverage of 4 molecules per nm’. This surface coverage exceeds the likely surface site H Citrate samples were equilibrated at 25°C for 24 hours and loss of citrate was recorded. The effects of uranyl citrate=1uM Potential effects on uranyl mobility:
which changes in other system components (solutes, pH) affect changes in metal density for goethite (2-10 sites/nm“) and possibly the geometric space available. One H T P s ——— and goethite were tested. 20 + 4 =1
possibility is that less than 100% of the citrate is sorbed. Alternatively, the way in which n the absence of goethite: U=1puM This finding may have profound effects on the mobility of uranyl in a system containing citrate. The
citrate is bound may change with surface coverage, e.g., bound by only one functional £ A g abiotic system may not be sufficient to predict the mobility of uranyl in certain DOE sites.
group. * 200 N . Without autoclaving, up to 70% of the citrate can be degraded after 24 hours in the absence of uranyl. In the 0 + References: ) ’
. ol presence of uranyl, less degradation was seen in this time period than for citrate alone. fluajrgzg‘enlogsuialagraﬁcierzix/‘sr}?gg o 980,100 of of by
* * In the presence of goethite: 0 time (hr) !
#cits a2 Tests showed less than 6% loss of citrate after 24 hours in the presence of goethite.




The Role of Anionic Ligands - Carbonate
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CARBONATE ADSORPTION ONTO GOETHITE

RELEVANCE

Carbonate Is Pervasive In Natural Aquatic Environments:

Concentrations are comparable to other major ions: Ca”, Na*, sof’, Ccr

Concentrations are a function of mineralogy, pH and Pco,
- Contributions in river water: Atmospheric CO, 60%, carbonate minerals 31%, organic matter 7%

Underground Pco, ranges from 0.35 matm to 50 matm (may reach 200 matm)

Average carbonate concentrations: 1 mM in rivers, 6.3 mM in groundwater

Carbonate Species Adsorb to Mineral Surfaces

Carbonate adsorption onto colloidal solids is expected to affect partitioning of other solutes onto surfaces.

Knowledge of the adsorptive behavior of carbonate is fundamental to understanding and predicting mobility and fate
of ionic pollutants.

RESULTS:

Carbonate Adsorption on Goethite

Carbonate adsorption on goethite has been determined experimentally in a closed recirculating gas/liquid system. The
equilibrium pH and Pco2 of an aqueous suspension is determined after adding known quantities of carbonate.

[COs]ads = [COs]tot added - [CO2g)] - [COs]solution

Adsorption in closed and open systems were studied as a function of pH, total solution carbonate (10 mM to 5 mM), and
ionic strength (0.01 and 0.1 M).

Closed systems with up to 0.133 mM total carbonate showed maximum adsorbed concentrations for pH values between
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6 and 7. The estimated site coverage is 14% for a site density of 2.3 sites/nmz.

In Open systems, carbonate adsorption (and total carbonate in solution) continuously increased up to the studied pH of
8.5. At this pH and near atmospheric Pco2 of 3.4 matm, surface site coverage was close to 40% (assuming 2.3

siteslnmz). A similar coverage was obtained for the system at 5.5 matm CO- at a pH of 7.5.

Increasing ionic strength significantly decreased adsorption of carbonate onto goethite for pH values < 7.

The Triple Layer Model (TLM) for surface complexation was used to simulate the carbonate adsorption data. Surface
acidity constants for goethite were determined independently from systems without carbonate.

The best simulation of the carbonate adsorption data was obtained by including reactions for the formation of three
different carbonate surface complexes. The surface complex stoichiometries were arrived at from an analysis of all
possible charge distribution configurations at the solid-liquid interface.

B2-1
LogK = 30.7
The TLM cannot be used to distinguish between bonding arrangements having the same stoichiometry and charge
distribution (e.g., complexes under M0O-1+Na). ATR-FTIR work is currently being conducted to determine whether the
possible surface complexes suggested by the TLM modeling exercise are present.
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Anionic adsorption onto goethite is normally found to decrease in the presence of carbonate
(for example for chromate (Cr(VI)) and acetate) (previous work).
Cationic adsorption effects are more complex due to the formation of soluble and insoluble
carbonate species, and the possibility of adsorbing metal-carbonato species. For example,

+ +,
uranyl (UO2 ) and neptunyl (NpO: ) adsorption onto aluminosilicate and oxide surfaces
decreases in the presence of carbonate. This can be explained by the formation of carbonato
complexes in solution that do not sorb strongly. (previous work).
Preliminary experiments with Pb(ll) show the opposite effect of carbonate on metal adsorption.
Atmospheric CO2 shows no difference in the adsorption behavior of Pb onto goethite compared
to the absence of CO;. Increasing the Pcoz to 1 atm causes an enhancement in the adsorption

The TLM simulates this effect by including a reaction for the formation of a ternary Pb-bound
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