Spin microscope based on optically detected magnetic resonance
Abstract
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
- Inventors:
- Issue Date:
- Research Org.:
- Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 921033
- Patent Number(s):
- 7305869
- Application Number:
- 11/102,626
- Assignee:
- United States Department of Energy U. S. Department of Energy (Washington, DC)
- Patent Classifications (CPCs):
-
B - PERFORMING OPERATIONS B82 - NANOTECHNOLOGY B82Y - SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES
G - PHYSICS G01 - MEASURING G01Q - SCANNING-PROBE TECHNIQUES OR APPARATUS
- DOE Contract Number:
- W-7405-ENG-36
- Resource Type:
- Patent
- Resource Relation:
- Patent File Date: 2005 Apr 11
- Country of Publication:
- United States
- Language:
- English
Citation Formats
Berman, Gennady P., and Chernobrod, Boris M. Spin microscope based on optically detected magnetic resonance. United States: N. p., 2007.
Web.
Berman, Gennady P., & Chernobrod, Boris M. Spin microscope based on optically detected magnetic resonance. United States.
Berman, Gennady P., and Chernobrod, Boris M. Tue .
"Spin microscope based on optically detected magnetic resonance". United States. https://www.osti.gov/servlets/purl/921033.
@article{osti_921033,
title = {Spin microscope based on optically detected magnetic resonance},
author = {Berman, Gennady P. and Chernobrod, Boris M.},
abstractNote = {The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2007},
month = {12}
}
Works referenced in this record:
Local fluorescent probes for the fluorescence resonance energy transfer scanning near-field optical microscopy
journal, April 2002
- Shubeita, G. T.; Sekatskii, S. K.; Dietler, G.
- Applied Physics Letters, Vol. 80, Issue 15
Observation of a magic discrete family of ultrabright Si nanoparticles
journal, February 2002
- Belomoin, G.; Therrien, J.; Smith, A.
- Applied Physics Letters, Vol. 80, Issue 5
Hidden symmetries in the energy levels of excitonic ‘artificial atoms’
journal, June 2000
- Bayer, M.; Stern, O.; Hawrylak, P.
- Nature, Vol. 405, Issue 6789
Spin microscope based on optically detected magnetic resonance
journal, January 2005
- Chernobrod, Boris M.; Berman, Gennady P.
- Journal of Applied Physics, Vol. 97, Issue 1
Optical detection of magnetic resonance in a single molecule
journal, May 1993
- Wrachtrup, J.; von Borczyskowski, C.; Bernard, J.
- Nature, Vol. 363, Issue 6426
Nanometer-resolution scanning optical microscope with resonance excitation of the fluorescence of the samples from a single-atom excited center
journal, March 1996
- Sekatskii, S. K.; Letokhov, V. S.
- Journal of Experimental and Theoretical Physics Letters, Vol. 63, Issue 5
Optically Detected Magnetic Resonance Study of Electron/Hole Traps on CdSe Quantum Dot Surfaces
journal, November 1998
- Lifshitz, E.; Dag, I.; Litvitn, I. D.
- The Journal of Physical Chemistry B, Vol. 102, Issue 46
Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution
journal, September 1998
- Hamann, H. F.; Gallagher, A.; Nesbitt, D. J.
- Applied Physics Letters, Vol. 73, Issue 11
Mechanical detection of magnetic resonance
journal, December 1992
- Rugar, D.; Yannoni, C. S.; Sidles, J. A.
- Nature, Vol. 360, Issue 6404
Magnetic resonance of a single molecular spin
journal, May 1993
- Köhler, J.; Disselhorst, J. A. J. M.; Donckers, M. C. J. M.
- Nature, Vol. 363, Issue 6426
Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix
journal, November 2002
- Wang, Y. Q.; Kong, G. L.; Chen, W. D.
- Applied Physics Letters, Vol. 81, Issue 22