DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-dimensional charge coupled device

Abstract

A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

Inventors:
 [1];  [2]
  1. Tracy, CA
  2. Livermore, CA
Issue Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
OSTI Identifier:
872656
Patent Number(s):
5981988
Assignee:
Regents of University of California (Oakland, CA)
Patent Classifications (CPCs):
H - ELECTRICITY H01 - BASIC ELECTRIC ELEMENTS H01L - SEMICONDUCTOR DEVICES
DOE Contract Number:  
W-7405-ENG-48
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
three-dimensional; charge; coupled; device; monolithic; dimensional; charged; 3d-ccd; utilizes; entire; bulk; semiconductor; generation; storage; transfer; provides; vast; improvement; current; ccd; architectures; surface; substrate; capable; developing; strong; e-field; throughout; depth; deep; buried; parallel; electrodes; material; backside; illumination; architecture; enables; single; image; photon; energies; visible; ultra-violet; soft; x-ray; energy; x-rays; 30; kev; electrically; connected; established; pixel; located; attracts; independent; confines; generated; diffusion; greatly; reduced; due; proximity; single device; charge coupled; coupled device; semiconductor substrate; substrate material; electrically connected; soft x-ray; greatly reduced; energy x-rays; charge generation; field throughout; greatly reduce; /257/

Citation Formats

Conder, Alan D, and Young, Bruce K. F. Three-dimensional charge coupled device. United States: N. p., 1999. Web.
Conder, Alan D, & Young, Bruce K. F. Three-dimensional charge coupled device. United States.
Conder, Alan D, and Young, Bruce K. F. Fri . "Three-dimensional charge coupled device". United States. https://www.osti.gov/servlets/purl/872656.
@article{osti_872656,
title = {Three-dimensional charge coupled device},
author = {Conder, Alan D and Young, Bruce K. F.},
abstractNote = {A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {1999},
month = {1}
}