Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions
Abstract
The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison tomore »
- Inventors:
- Issue Date:
- Research Org.:
- Univ. of California (United States)
- Sponsoring Org.:
- USDOE, Washington, DC (United States)
- OSTI Identifier:
- 675787
- Patent Number(s):
- 5834525
- Application Number:
- PAN: 8-839,359
- Assignee:
- Univ. of California, Oakland, CA (United States)
- DOE Contract Number:
- AC03-76SF00098
- Resource Type:
- Patent
- Resource Relation:
- Other Information: PBD: 10 Nov 1998
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 54 ENVIRONMENTAL SCIENCES; CHELATING AGENTS; PYROCATECHOL; AMIDES; POLYSTYRENE; DIVINYLBENZENE; WASTE WATER; DEMETALLIZATION; COPPER; ZINC; MANGANESE; NICKEL; MAGNESIUM; ALUMINIUM; CHROMIUM; MERCURY; IRON
Citation Formats
Fish, R H. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions. United States: N. p., 1998.
Web.
Fish, R H. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions. United States.
Fish, R H. Tue .
"Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions". United States.
@article{osti_675787,
title = {Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions},
author = {Fish, R H},
abstractNote = {The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity. 9 figs.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {1998},
month = {11}
}