Decorrelating effects in multiple linear regression to decompose and attribute risk to common and proper effects
Abstract
Effects in multiple linear regression may be decorrelated to decompose and attribute risk to common and proper effects. In other words, an attribute risk may be decomposed to two or more causes, where each cause is characterized by multiple attributes. The risk decomposition may decompose risk into a first residual part associated with a first set of risk factors, a second residual part associated with a second set of risk factors, and a common part associated with a set of common hidden variables that minimize a correlation between the first set of factors and the second set of factors. The common hidden variables may be modeled using a hidden factor model. An effect of the correlation may be minimized on the first set of risk factors and the second set of risk factors, and how correlated the terms of the risk decomposition are may be quantified.
- Inventors:
- Issue Date:
- Research Org.:
- Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1771483
- Patent Number(s):
- 10796258
- Application Number:
- 16/103,452
- Assignee:
- Triad National Security, LLC (Los Alamos, NM)
- Patent Classifications (CPCs):
-
G - PHYSICS G06 - COMPUTING G06F - ELECTRIC DIGITAL DATA PROCESSING
G - PHYSICS G06 - COMPUTING G06N - COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- DOE Contract Number:
- AC52-06NA25396
- Resource Type:
- Patent
- Resource Relation:
- Patent File Date: 08/14/2018
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 97 MATHEMATICS AND COMPUTING
Citation Formats
Hengartner, Nicolas W., and Cuellar-Hengartner, Leticia. Decorrelating effects in multiple linear regression to decompose and attribute risk to common and proper effects. United States: N. p., 2020.
Web.
Hengartner, Nicolas W., & Cuellar-Hengartner, Leticia. Decorrelating effects in multiple linear regression to decompose and attribute risk to common and proper effects. United States.
Hengartner, Nicolas W., and Cuellar-Hengartner, Leticia. Tue .
"Decorrelating effects in multiple linear regression to decompose and attribute risk to common and proper effects". United States. https://www.osti.gov/servlets/purl/1771483.
@article{osti_1771483,
title = {Decorrelating effects in multiple linear regression to decompose and attribute risk to common and proper effects},
author = {Hengartner, Nicolas W. and Cuellar-Hengartner, Leticia},
abstractNote = {Effects in multiple linear regression may be decorrelated to decompose and attribute risk to common and proper effects. In other words, an attribute risk may be decomposed to two or more causes, where each cause is characterized by multiple attributes. The risk decomposition may decompose risk into a first residual part associated with a first set of risk factors, a second residual part associated with a second set of risk factors, and a common part associated with a set of common hidden variables that minimize a correlation between the first set of factors and the second set of factors. The common hidden variables may be modeled using a hidden factor model. An effect of the correlation may be minimized on the first set of risk factors and the second set of risk factors, and how correlated the terms of the risk decomposition are may be quantified.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {10}
}
Works referenced in this record:
Exposure method and apparatus
patent, December 2000
- Okamoto, Hiroki; Kawakubo, Masaharu; Mizutani, Shinji
- US Patent Document 6,163,366
Common risk factors in the returns on stocks and bonds
journal, February 1993
- Fama, Eugene F.; French, Kenneth R.
- Journal of Financial Economics, Vol. 33, Issue 1
Determining distance between an object and a capture device based on captured image data
patent-application, February 2016
- Macciola, Anthony; Ma, Jiyong; Shustorovich, Alexander
- US Patent Application 14/932902; 20160055395
Orthogonalized factors and systematic risk decomposition
journal, May 2013
- Klein, Rudolf F.; Chow, Victor K.
- The Quarterly Review of Economics and Finance, Vol. 53, Issue 2