Morphologically and size uniform monodisperse particles and their shape-directed self-assembly
Abstract
Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.
- Inventors:
- Issue Date:
- Research Org.:
- Intelligent Material Solutions, Inc., Princeton, NJ (United States); Univ. of Pennsylvania, Philadelphia, PA (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1568259
- Patent Number(s):
- 10273407
- Application Number:
- 16/117,453
- Assignee:
- Intelligent Material Solutions, Inc. (Princeton, NJ); The Trustees of the University of Pennsylvania (Philadelphia, PA)
- Patent Classifications (CPCs):
-
C - CHEMISTRY C01 - INORGANIC CHEMISTRY C01P - INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
C - CHEMISTRY C09 - DYES C09K - MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- DOE Contract Number:
- SC0002158
- Resource Type:
- Patent
- Resource Relation:
- Patent File Date: 08/30/2018
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Citation Formats
Collins, Joshua E., Bell, Howard Y., Ye, Xingchen, and Murray, Christopher Bruce. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly. United States: N. p., 2019.
Web.
Collins, Joshua E., Bell, Howard Y., Ye, Xingchen, & Murray, Christopher Bruce. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly. United States.
Collins, Joshua E., Bell, Howard Y., Ye, Xingchen, and Murray, Christopher Bruce. Tue .
"Morphologically and size uniform monodisperse particles and their shape-directed self-assembly". United States. https://www.osti.gov/servlets/purl/1568259.
@article{osti_1568259,
title = {Morphologically and size uniform monodisperse particles and their shape-directed self-assembly},
author = {Collins, Joshua E. and Bell, Howard Y. and Ye, Xingchen and Murray, Christopher Bruce},
abstractNote = {Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {4}
}