skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlled porosity in electrodes

Abstract

Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

Inventors:
; ; ; ; ;
Issue Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1497866
Patent Number(s):
10,164,242
Application Number:
14/716,501
Assignee:
Massachusetts Institute of Technology (Cambridge, MA); The Regents of the University of Michigan (Ann Arbor, MI); The Regents of the University of California (Oakland, CA)
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 May 19
Country of Publication:
United States
Language:
English

Citation Formats

Chiang, Yet-Ming, Bae, Chang-Jun, Halloran, John William, Fu, Qiang, Tomsia, Antoni P., and Erdonmez, Can K. Controlled porosity in electrodes. United States: N. p., 2018. Web.
Chiang, Yet-Ming, Bae, Chang-Jun, Halloran, John William, Fu, Qiang, Tomsia, Antoni P., & Erdonmez, Can K. Controlled porosity in electrodes. United States.
Chiang, Yet-Ming, Bae, Chang-Jun, Halloran, John William, Fu, Qiang, Tomsia, Antoni P., and Erdonmez, Can K. Tue . "Controlled porosity in electrodes". United States. https://www.osti.gov/servlets/purl/1497866.
@article{osti_1497866,
title = {Controlled porosity in electrodes},
author = {Chiang, Yet-Ming and Bae, Chang-Jun and Halloran, John William and Fu, Qiang and Tomsia, Antoni P. and Erdonmez, Can K.},
abstractNote = {Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {12}
}

Patent:

Save / Share:

Works referenced in this record:

Transport properties of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)
journal, April 1998


Li1.01Mn1.97O4 surface modification by poly(3,4-ethylenedioxythiophene)
journal, June 2003

  • Arbizzani, Catia; Balducci, Andrea; Mastragostino, Marina
  • Journal of Power Sources, Vol. 119-121, p. 695-700
  • DOI: 10.1016/S0378-7753(03)00228-3

Conjugated dicarboxylate anodes for Li-ion batteries
journal, January 2009

  • Armand, M.; Grugeon, S.; Vezin, H.
  • Nature Materials, Vol. 8, Issue 2, p. 120-125
  • DOI: 10.1038/nmat2372

Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance
journal, December 2012

  • Bae, Chang-Jun; Erdonmez, Can K.; Halloran, John W.
  • Advanced Materials, Vol. 25, Issue 9
  • DOI: 10.1002/adma.201204055

Investigation of the Lithiation and Delithiation Conversion Mechanisms of Bismuth Fluoride Nanocomposites
journal, January 2006

  • Bervas, M.; Mansour, A. N.; Yoon, W.-S.
  • Journal of The Electrochemical Society, Vol. 153, Issue 4, p. A799-A808
  • DOI: 10.1149/1.2167951

Poly(dimethylsiloxane)-poly(ethylene oxide) based polyurethane networks used as electrolytes in lithium electrochemical solid state batteries
journal, April 1985


High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Reducing Carbon in LiFePO[sub 4]/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density
journal, January 2002

  • Chen, Zhaohui; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 149, Issue 9
  • DOI: 10.1149/1.1498255

High Capacity, Temperature-Stable Lithium Aluminum Manganese Oxide Cathodes for Rechargeable Batteries
journal, January 1999

  • Chiang, Yet-Ming; Sadoway, Donald R.; Jang, Young‐Il
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 3, p. 107-110
  • DOI: 10.1149/1.1390750

Self-Assembling Colloidal-Scale Devices: Selecting and Using Short-Range Surface Forces Between Conductive Solids
journal, February 2007

  • Cho, Y. K.; Wartena, R.; Tobias, S. M.
  • Advanced Functional Materials, Vol. 17, Issue 3
  • DOI: 10.1002/adfm.200600846

Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes
journal, January 1997

  • Darling, Robert
  • Journal of The Electrochemical Society, Vol. 144, Issue 12
  • DOI: 10.1149/1.1838166

Modeling Side Reactions in Composite Li[sub y]Mn[sub 2]O[sub 4] Electrodes
journal, January 1998

  • Darling, Robert
  • Journal of The Electrochemical Society, Vol. 145, Issue 3
  • DOI: 10.1149/1.1838376

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Full spectral calculation of non-retarded Hamaker constants for ceramic systems from interband transition strengths
journal, January 1995


Origins and Applications of London Dispersion Forces and Hamaker Constants in Ceramics
journal, September 2000


Simulation and Optimization of the Dual Lithium Ion Insertion Cell
journal, January 1994

  • Fuller, Thomas F.
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054684

Li/β-VOPO[sub 4]: A New 4 V System for Lithium Batteries
journal, January 1999

  • Gaubicher, J.
  • Journal of The Electrochemical Society, Vol. 146, Issue 12
  • DOI: 10.1149/1.1392646

Li Metal-Free Rechargeable LiMn[sub 2]O[sub 4]∕Carbon Cells: Their Understanding and Optimization
journal, January 1992

  • Guyomard, D.
  • Journal of The Electrochemical Society, Vol. 139, Issue 4
  • DOI: 10.1149/1.2069372

3-D Microbatteries
journal, February 2003


Approaching Theoretical Capacity of LiFePO[sub 4] at Room Temperature at High Rates
journal, January 2001

  • Huang, H.; Yin, S. -C.; Nazar, L. F.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 10
  • DOI: 10.1149/1.1396695

Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material
journal, May 1997


Charge–discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries
journal, August 1999


Lithium intercalation in Li_Mg_Mn_O and Li_Al_Mn_O spinels
journal, August 1996


Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides
journal, January 2004

  • Li, Hong; Balaya, Palani; Maier, Joachim
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1878-A1885
  • DOI: 10.1149/1.1801451

Nanocomposite Li-Ion Battery Anodes Produced by the Partial Reduction of Mixed Oxides
journal, July 2001

  • Limthongkul, Pimpa; Wang, Haifeng; Chiang, Yet-Ming
  • Chemistry of Materials, Vol. 13, Issue 7
  • DOI: 10.1021/cm0014280

Three-Dimensional Battery Architectures
journal, October 2004

  • Long, Jeffrey W.; Dunn, Bruce; Rolison, Debra R.
  • Chemical Reviews, Vol. 104, Issue 10, p. 4463-4492
  • DOI: 10.1021/cr020740l

Ionic Conductivity of Dual-Phase Polymer Electrolytes Comprised of NBR/SBR Latex Films Swollen with Lithium Salt Solutions
journal, January 1994

  • Matsumoto, Morihiko
  • Journal of The Electrochemical Society, Vol. 141, Issue 8
  • DOI: 10.1149/1.2055047

Vaporization of Graphite in Plasma Arc and Identification of C[sub 60] in the Deposit
journal, January 1992

  • Matsumoto, Osamu
  • Journal of The Electrochemical Society, Vol. 139, Issue 1
  • DOI: 10.1149/1.2069216

Direct Measurement of Repulsive van der Waals Interactions Using an Atomic Force Microscope
journal, June 1996

  • Milling, Andrew; Mulvaney, Paul; Larson, Ian
  • Journal of Colloid and Interface Science, Vol. 180, Issue 2
  • DOI: 10.1006/jcis.1996.0326

Polymeric insertion electrodes
journal, September 1988


Production of highly aligned porous alumina ceramics by extruding frozen alumina/camphene body
journal, October 2011


A Mathematical Model for Intercalation Electrode Behavior
journal, January 1998

  • Nagarajan, Gowri S.
  • Journal of The Electrochemical Society, Vol. 145, Issue 3
  • DOI: 10.1149/1.1838344

Rechargeable batteries with organic radical cathodes
journal, June 2002


Negative Hamaker coefficients I. Particle engulfment or rejection at solidification fronts
journal, April 1979

  • Neumann, A. W.; Omenyi, S. N.; van Oss, C. J.
  • Colloid and Polymer Science, Vol. 257, Issue 4
  • DOI: 10.1007/BF01521578

Theoretical Analysis of Current Distribution in Porous Electrodes
journal, January 1962

  • Newman, John S.; Tobias, Charles W.
  • Journal of The Electrochemical Society, Vol. 109, Issue 12
  • DOI: 10.1149/1.2425269

Organic radical battery: nitroxide polymers as a cathode-active material
journal, November 2004


Synthesis and Characterization of LiAl[sub 1∕4]Ni[sub 3∕4]O[sub 2] (R3m) for Lithium-Ion (Shuttlecock) Batteries
journal, January 1995

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 142, Issue 12
  • DOI: 10.1149/1.2048458

Double-Layer Capacitance in a Dual Lithium Ion Insertion Cell
journal, January 1999

  • Ong, Irene J.
  • Journal of The Electrochemical Society, Vol. 146, Issue 12
  • DOI: 10.1149/1.1392643

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Thermal Modeling of the Lithium/Polymer Battery
journal, January 1995

  • Pals, Carolyn R.
  • Journal of The Electrochemical Society, Vol. 142, Issue 10
  • DOI: 10.1149/1.2049974

Thermal Modeling of the Lithium/Polymer Battery
journal, January 1995

  • Pals, Carolyn R.
  • Journal of The Electrochemical Society, Vol. 142, Issue 10
  • DOI: 10.1149/1.2049975

Structure and Electrochemistry of Carbon-Metal Fluoride Nanocomposites Fabricated by Solid-State Redox Conversion Reaction
journal, January 2005

  • Plitz, I.; Badway, F.; Al-Sharab, J.
  • Journal of The Electrochemical Society, Vol. 152, Issue 2, p. A307-A315
  • DOI: 10.1149/1.1842035

Electroactivity of natural and synthetic triphylite
journal, July 2001


Assembling unidirectionally frozen alumina/camphene bodies for aligned porous alumina ceramics with larger dimensions
journal, March 2011


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Electronic Conductivity of LiCoO[sub 2] and Its Enhancement by Magnesium Doping
journal, January 1997

  • Tukamoto, H.
  • Journal of The Electrochemical Society, Vol. 144, Issue 9
  • DOI: 10.1149/1.1837976

Applications of net repulsive van der Waals forces between different particles, macromolecules, or biological cells in liquids
journal, January 1980


Comparison Between Antigen-Antibody Binding Energies and Interfacial Free Energies
journal, January 1977


Repulsive van der Waals Forces. I. Complete Dissociation of Antigen-Antibody Complexes by Means of Negative van der Waals Forces
journal, January 1979

  • Van Oss, C. J.; Absolom, D. R.; Grossberg, A. L.
  • Immunological Communications, Vol. 8, Issue 1
  • DOI: 10.3109/08820137909044703

Repulsive van der Waals Forces. II. Mechanism of Hydrophobic Chromatography
journal, April 1979

  • Van Oss, C. J.; Absolom, D. R.; Neumann, A. W.
  • Separation Science and Technology, Vol. 14, Issue 4
  • DOI: 10.1080/01496397908057149

All Solid-State Li/Li[sub x]MnO[sub 2] Polymer Battery Using Ceramic Modified Polymer Electrolytes
journal, January 2002

  • Wang, Congxiao; Xia, Yongyao; Koumoto, Kenichi
  • Journal of The Electrochemical Society, Vol. 149, Issue 8
  • DOI: 10.1149/1.1486239

Optimized LiFePO[sub 4] for Lithium Battery Cathodes
journal, January 2001

  • Yamada, A.; Chung, S. C.; Hinokuma, K.
  • Journal of The Electrochemical Society, Vol. 148, Issue 3
  • DOI: 10.1149/1.1348257

Composites Reinforced in Three Dimensions by Using Low Magnetic Fields
journal, January 2012


Magnetic assembly of colloidal superstructures with multipole symmetry
journal, February 2009

  • Erb, Randall M.; Son, Hui S.; Samanta, Bappaditya
  • Nature, Vol. 457, Issue 7232
  • DOI: 10.1038/nature07766

Structure evolution in a paramagnetic latex suspension
journal, December 1992


Permanently Linked Monodisperse Paramagnetic Chains
journal, December 1998

  • Furst, Eric M.; Suzuki, Chiemi; Fermigier, Marc
  • Langmuir, Vol. 14, Issue 26
  • DOI: 10.1021/la980703i

Magnetic Transport, Mixing and Release of Cargo with Tailored Nanoliter Droplets
journal, March 2012

  • Sander, Jonathan S.; Erb, Randall M.; Denier, Claude
  • Advanced Materials, Vol. 24, Issue 19
  • DOI: 10.1002/adma.201200263

An Analytical Method to Determine Tortuosity in Rechargeable Battery Electrodes
journal, January 2012

  • Vijayaraghavan, Bharath; Ely, David R.; Chiang, Yet-Ming
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.jes113224

Tortuosity characterization of 3D microstructure at nano-scale for energy storage and conversion materials
journal, March 2014


Validity of the Bruggeman relation for porous electrodes
journal, October 2013

  • Chung, Ding-Wen; Ebner, Martin; Ely, David R.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 7
  • DOI: 10.1088/0965-0393/21/7/074009

Quantifying tortuosity in porous Li-ion battery materials
journal, March 2009


Direct Measurements of Effective Ionic Transport in Porous Li-Ion Electrodes
journal, December 2012

  • Zacharias, Nathan A.; Nevers, Douglas R.; Skelton, Cole
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.062302jes

Fracture Behavior of Alumina/Monazite Multilayer Laminates
journal, April 2000


High ionic conductivity in poly(dimethyl siloxane-co-ethylene oxide) dissolving lithium perchlorate
journal, December 1984

  • Nagaoka, K.; Naruse, H.; Shinohara, I.
  • Journal of Polymer Science: Polymer Letters Edition, Vol. 22, Issue 12
  • DOI: 10.1002/pol.1984.130221205

Aggregation dynamics of nonmagnetic particles in a ferrofluid
journal, September 2004


Beyond diffusion-limited aggregation kinetics in microparticle suspensions
journal, November 2009


Microfabrication of Ceramics by Co-extrusion
journal, January 1998