skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gene modification in clostridium for increased alcohol production

Abstract

The present disclosure is directed to genetically engineered bacteria strains with enhanced biofuel-producing capabilities from cellulosic substrates. The bacteria strains of the present disclosure comprise an inactivated Type I glutamine synthetase gene. The present disclosure is also directed to methods of producing biofuels from cellulosic biomass using the genetically engineered bacteria strains.

Inventors:
;
Issue Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1496801
Patent Number(s):
10,179,907
Application Number:
15/643,580
Assignee:
UT-BATTELLE, LLC (Oak Ridge, TN)
DOE Contract Number:  
AC05-000R22725
Resource Type:
Patent
Resource Relation:
Patent File Date: 2017 Jul 07
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Rydzak, Thomas, and Guss, Adam M. Gene modification in clostridium for increased alcohol production. United States: N. p., 2019. Web.
Rydzak, Thomas, & Guss, Adam M. Gene modification in clostridium for increased alcohol production. United States.
Rydzak, Thomas, and Guss, Adam M. Tue . "Gene modification in clostridium for increased alcohol production". United States. https://www.osti.gov/servlets/purl/1496801.
@article{osti_1496801,
title = {Gene modification in clostridium for increased alcohol production},
author = {Rydzak, Thomas and Guss, Adam M.},
abstractNote = {The present disclosure is directed to genetically engineered bacteria strains with enhanced biofuel-producing capabilities from cellulosic substrates. The bacteria strains of the present disclosure comprise an inactivated Type I glutamine synthetase gene. The present disclosure is also directed to methods of producing biofuels from cellulosic biomass using the genetically engineered bacteria strains.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {1}
}

Patent:

Save / Share:

Works referenced in this record:

High Ethanol Titers from Cellulose by Using Metabolically Engineered Thermophilic, Anaerobic Microbes
journal, September 2011

  • Argyros, D. Aaron; Tripathi, Shital A.; Barrett, Trisha F.
  • Applied and Environmental Microbiology, Vol. 77, Issue 23, p. 8288-8294
  • DOI: 10.1128/AEM.00646-11

Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment
journal, June 2001


Elimination of formate production in Clostridium thermocellum
journal, July 2015

  • Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 42, Issue 9
  • DOI: 10.1007/s10295-015-1644-3

Development of pyrF-Based Genetic System for Targeted Gene Deletion in Clostridium thermocellum and Creation of a pta Mutant
journal, August 2010

  • Tripathi, S. A.; Olson, D. G.; Argyros, D. A.
  • Applied and Environmental Microbiology, Vol. 76, Issue 19, p. 6591-6599
  • DOI: 10.1128/AEM.01484-10

Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways
journal, May 2013

  • van der Veen, Douwe; Lo, Jonathan; Brown, Steven D.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 40, Issue 7
  • DOI: 10.1007/s10295-013-1275-5

Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress
journal, January 2013

  • Wilson, Charlotte M.; Yang, Shihui; Rodriguez, Miguel
  • Biotechnology for Biofuels, Vol. 6, Issue 1
  • DOI: 10.1186/1754-6834-6-131

Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum
journal, November 2015


Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405)
journal, January 2012


Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum
journal, January 2013


Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum
journal, January 2015

  • Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0204-4

Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum
journal, January 2012

  • Guss, Adam M.; Olson, Daniel G.; Caiazza, Nicky C.
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-30

The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading
journal, October 2014

  • Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.
  • Biotechnology for Biofuels, Vol. 7, Issue 1
  • DOI: 10.1186/s13068-014-0155-1