skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Passive radiative cooling of a body

Abstract

A metallic waveguide tuned to an infrared region of interest provides spectral and spatial control over emitted/absorbed thermal radiation. The ratio of the depth of the waveguide to the smallest lateral dimension thereof is such that that the lateral dimension provides spectral selectivity and that the waveguide is deep enough for a fixed lateral dimension to establish directionality but is not so deep that it incurs severe ohmic losses. A panel with an array of such waveguides directs thermal radiation from a body in a specific direction and with a spectral response that is the result of the physical dimensions of the individual waveguides that make up the waveguide array and the arrangement of the waveguides in the array. The waveguide axis may be obliquely oriented with respect to the substrate normal so as to impart non-normal directionality to the emitted radiation with respect to the substrate normal surface.

Inventors:
Issue Date:
Research Org.:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1496602
Patent Number(s):
10,173,792
Application Number:
14/950,298
Assignee:
National Technology & Engineering Solutions of Sandia, LLC (Albuquerque, NM) SNL
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Nov 24
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Burckel, David Bruce. Passive radiative cooling of a body. United States: N. p., 2019. Web.
Burckel, David Bruce. Passive radiative cooling of a body. United States.
Burckel, David Bruce. Tue . "Passive radiative cooling of a body". United States. https://www.osti.gov/servlets/purl/1496602.
@article{osti_1496602,
title = {Passive radiative cooling of a body},
author = {Burckel, David Bruce},
abstractNote = {A metallic waveguide tuned to an infrared region of interest provides spectral and spatial control over emitted/absorbed thermal radiation. The ratio of the depth of the waveguide to the smallest lateral dimension thereof is such that that the lateral dimension provides spectral selectivity and that the waveguide is deep enough for a fixed lateral dimension to establish directionality but is not so deep that it incurs severe ohmic losses. A panel with an array of such waveguides directs thermal radiation from a body in a specific direction and with a spectral response that is the result of the physical dimensions of the individual waveguides that make up the waveguide array and the arrangement of the waveguides in the array. The waveguide axis may be obliquely oriented with respect to the substrate normal so as to impart non-normal directionality to the emitted radiation with respect to the substrate normal surface.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {1}
}

Patent:

Save / Share:

Works referenced in this record:

The radiative cooling of selective surfaces
journal, May 1975


Thermal performance of radiative cooling panels
journal, June 1983

  • Berdahl, P.; Martin, M.; Sakkal, F.
  • International Journal of Heat and Mass Transfer, Vol. 26, Issue 6, p. 871-880
  • DOI: 10.1016/S0017-9310(83)80111-2

Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling
journal, March 2013

  • Rephaeli, Eden; Raman, Aaswath; Fan, Shanhui
  • Nano Letters, Vol. 13, Issue 4, p. 1457-1461
  • DOI: 10.1021/nl4004283