skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Devices and methods for photoelectrochemical water splitting

Abstract

The present disclosure relates to photoelectrochemical devices and systems for capturing the energy of electromagnetic radiation and utilizing the captured energy for electrolysis to produce hydrogen gas and oxygen gas.

Inventors:
; ; ; ; ; ;
Issue Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1491156
Patent Number(s):
10,087,535
Application Number:
15/078,206
Assignee:
Alliance for Sustainable Energy, LLC (Golden, CO)
DOE Contract Number:  
AC36-08GO28308
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Mar 23
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Friedman, Daniel Joseph, Deutsch, Todd Gregory, Turner, John A., Doscher, Henning, Young, James Luke, Steiner, Myles, and France, Ryan Matthew. Devices and methods for photoelectrochemical water splitting. United States: N. p., 2018. Web.
Friedman, Daniel Joseph, Deutsch, Todd Gregory, Turner, John A., Doscher, Henning, Young, James Luke, Steiner, Myles, & France, Ryan Matthew. Devices and methods for photoelectrochemical water splitting. United States.
Friedman, Daniel Joseph, Deutsch, Todd Gregory, Turner, John A., Doscher, Henning, Young, James Luke, Steiner, Myles, and France, Ryan Matthew. Tue . "Devices and methods for photoelectrochemical water splitting". United States. https://www.osti.gov/servlets/purl/1491156.
@article{osti_1491156,
title = {Devices and methods for photoelectrochemical water splitting},
author = {Friedman, Daniel Joseph and Deutsch, Todd Gregory and Turner, John A. and Doscher, Henning and Young, James Luke and Steiner, Myles and France, Ryan Matthew},
abstractNote = {The present disclosure relates to photoelectrochemical devices and systems for capturing the energy of electromagnetic radiation and utilizing the captured energy for electrolysis to produce hydrogen gas and oxygen gas.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {10}
}

Patent:

Save / Share:

Works referenced in this record:

Thin film photovoltaic structure
patent-application, December 2007


Solid-liquid equilibria for III–V quinary alloy semiconductors
journal, August 1997


Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems
journal, August 2010

  • Law, Daniel C.; King, R. R.; Yoon, H.
  • Solar Energy Materials and Solar Cells, Vol. 94, Issue 8, p. 1314-1318
  • DOI: 10.1016/j.solmat.2008.07.014

MOVPE grown Ga1−xInxAs solar cells for GaInP/GaInAs tandem applications
journal, January 2000

  • Dimroth, F.; Lanyi, P.; Schubert, U.
  • Journal of Electronic Materials, Vol. 29, Issue 1, p. 42-46
  • DOI: 10.1007/s11664-000-0092-6

Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials
journal, August 2014

  • Benck, Jesse D.; Lee, Sang Chul; Fong, Kara D.
  • Advanced Energy Materials, Vol. 4, Issue 18
  • DOI: 10.1002/aenm.201400739

29.5%‐efficient GaInP/GaAs tandem solar cells
journal, August 1994

  • Bertness, K. A.; Kurtz, Sarah R.; Friedman, D. J.
  • Applied Physics Letters, Vol. 65, Issue 8
  • DOI: 10.1063/1.112171

Highly efficient water splitting by a dual-absorber tandem cell
journal, November 2012


Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices
journal, January 2014

  • Döscher, H.; Geisz, J. F.; Deutsch, T. G.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01753F

Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance
journal, January 2016

  • Döscher, H.; Young, J. L.; Geisz, J. F.
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE03206G

1-eV solar cells with GaInNAs active layer
journal, December 1998


Photoelectrochemical decomposition of water using modified monolithic tandem cells
journal, April 1999

  • Gao, Xiaoping; Kocha, Shyam; Frank, Arthur J.
  • International Journal of Hydrogen Energy, Vol. 24, Issue 4, p. 319-325
  • DOI: 10.1016/S0360-3199(98)00052-4

Photocurrent of 1eV GaInNAs lattice-matched to GaAs
journal, December 1998


40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions
journal, September 2008

  • Geisz, J. F.; Friedman, D. J.; Ward, J. S.
  • Applied Physics Letters, Vol. 93, Issue 12, Article No. 123505
  • DOI: 10.1063/1.2988497

Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
journal, January 2014

  • Hisatomi, Takashi; Kubota, Jun; Domen, Kazunari
  • Chem. Soc. Rev., Vol. 43, Issue 22
  • DOI: 10.1039/C3CS60378D

Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy
journal, June 2007

  • Jackrel, David B.; Bank, Seth R.; Yuen, Homan B.
  • Journal of Applied Physics, Vol. 101, Issue 11
  • DOI: 10.1063/1.2744490

Solar-hydrogen Production by a Monolithic Photovoltaic-electrolytic Cell
journal, December 2012

  • Jeon, Hyo Sang; Min, Byoung Koun
  • Journal of Electrochemical Science and Technology, Vol. 3, Issue 4
  • DOI: 10.5229/JECST.2012.3.4.149

High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production
journal, February 2001


Photoelectrochemical decomposition of water utilizing monolithic tandem cells
journal, April 1998


p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production
journal, September 2012

  • Lee, Min Hyung; Takei, Kuniharu; Zhang, Junjun
  • Angewandte Chemie International Edition, Vol. 51, Issue 43
  • DOI: 10.1002/anie.201203174

Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure
journal, September 2015

  • May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9286

Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting
journal, January 2011

  • Oh, Jihun; Deutsch, Todd G.; Yuan, Hao-Chih
  • Energy & Environmental Science, Vol. 4, Issue 5
  • DOI: 10.1039/c1ee01124c

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Photoelectrochemical Tandem Cells for Solar Water Splitting
journal, July 2013

  • Prévot, Mathieu S.; Sivula, Kevin
  • The Journal of Physical Chemistry C, Vol. 117, Issue 35
  • DOI: 10.1021/jp405291g

Low-acceptor-concentration GaInNAs grown by molecular-beam epitaxy for high-current p-i-n solar cell applications
journal, November 2005

  • Ptak, A. J.; Friedman, D. J.; Kurtz, Sarah
  • Journal of Applied Physics, Vol. 98, Issue 9, Article No. 094501
  • DOI: 10.1063/1.2113414

Using TiO 2 as a Conductive Protective Layer for Photocathodic H 2 Evolution
journal, January 2013

  • Seger, Brian; Pedersen, Thomas; Laursen, Anders B.
  • Journal of the American Chemical Society, Vol. 135, Issue 3
  • DOI: 10.1021/ja309523t

2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs
journal, January 2014

  • Seger, Brian; Castelli, Ivano E.; Vesborg, Peter C. K.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE01335B

Lattice-mismatched approaches for high-performance, III-V photovoltaic energy converters
conference, January 2005


Splitting water with semiconducting photoelectrodes—Efficiency considerations
journal, January 1986


43.5% efficient lattice matched solar cells
conference, September 2011

  • Wiemer, Michael; Sabnis, Vijit; Yuen, Homan
  • SPIE Solar Energy + Technology, SPIE Proceedings
  • DOI: 10.1117/12.897769