skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

Abstract

Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

Inventors:
Issue Date:
Research Org.:
Field Upgrading Limited, Calgary, CA
Sponsoring Org.:
USDOE
OSTI Identifier:
1490855
Patent Number(s):
10,087,538
Application Number:
15/279,926
Assignee:
FIELD UPGRADING LIMITED (Calgary, CA)
DOE Contract Number:  
FE0000408
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Sep 29
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Gordon, John Howard. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides. United States: N. p., 2018. Web.
Gordon, John Howard. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides. United States.
Gordon, John Howard. Tue . "Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides". United States. https://www.osti.gov/servlets/purl/1490855.
@article{osti_1490855,
title = {Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides},
author = {Gordon, John Howard},
abstractNote = {Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {10}
}

Patent:

Save / Share:

Works referenced in this record:

Desulphurization of gasoline by metallic sodium
journal, July 1976


High temperature naphthenic acid corrosion of steel in high TAN refining media
journal, September 2008


Chemistry and properties of solids with the [NZP] skeleton
journal, September 1993


Ionic-liquid materials for the electrochemical challenges of the future
journal, July 2009

  • Armand, Michel; Endres, Frank; MacFarlane, Douglas R.
  • Nature Materials, Vol. 8, Issue 8, p. 621-629
  • DOI: 10.1038/nmat2448

Selective sodium removal from aqueous waste streams with NaSicon ceramics
journal, May 1999


The preparation and characterization of dense, highly conductive Na5GdSi4O12 nasicon (NGS)
journal, December 1980


Crystal chemistry of the Na1+xZr2−xLx(PO4)3 (L = Cr, In, Yb) solid solutions
journal, March 1981


Lithium ion conducting Li4−2xGe1−xSxO4 solid electrolytes
journal, August 1993


New solid electrolytes and mixed conductors: Li3 + xCr1 − xMxO4: M = Ge, Ti
journal, March 1995


Dentrite-Free Electrochemical Deposition of Li–Na Alloys from an Ionic Liquid Electrolyte
journal, January 2006

  • Doyle, Kevin P.; Lang, Christopher M.; Kim, Ketack
  • Journal of The Electrochemical Society, Vol. 153, Issue 7, p. A1353-A1357
  • DOI: 10.1149/1.2199444

Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5
journal, December 1997


Conduction paths in sintered ionic conductive material Na1+xYxZr2−x(PO4)3
journal, October 1981

  • Fujitsu, Satoru; Nagai, Masayuki; Kanazawa, Takafumi
  • Materials Research Bulletin, Vol. 16, Issue 10, p. 1299-1309
  • DOI: 10.1016/0025-5408(81)90101-X

Fast Na+-ion transport in skeleton structures
journal, February 1976


Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12
journal, February 1976


Electrochemical Investigation of Quaternary Ammonium/Aluminum Chloride Ionic Liquids
journal, January 2004

  • Kim, K.; Lang, Christopher; Moulton, Roger
  • Journal of The Electrochemical Society, Vol. 151, Issue 8, p. A1168-A1172
  • DOI: 10.1149/1.1763772

The Role of Additives in the Electroreduction of Sodium Ions in Chloroaluminate-Based Ionic Liquids
journal, January 2005

  • Kim, Ketack; Lang, Christopher; Kohl, Paul A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 1, p. E9-E13
  • DOI: 10.1149/1.1834898

Li-air batteries: A classic example of limitations owing to solubilities
journal, January 2007

  • Kowalczk, Ian; Read, Jeffery; Salomon, Mark
  • Pure and Applied Chemistry, Vol. 79, Issue 5
  • DOI: 10.1351/pac200779050851

Cation Electrochemical Stability in Chloroaluminate Ionic Liquids
journal, October 2005

  • Lang, Christopher M.; Kim, Ketack; Guerra, Liezel
  • The Journal of Physical Chemistry B, Vol. 109, Issue 41, p. 19454-19462
  • DOI: 10.1021/jp053106v

Ionic conductivity of NASICON-type Na1+xMxZr2−xP3O12 (M: Yb, Er, Dy)
journal, March 1996


High Voltage Lithium Polymer Cells Using a PAN-Based Composite Electrolyte
journal, January 2002

  • Panero, S.; Satolli, D.; D’Epifano, A.
  • Journal of The Electrochemical Society, Vol. 149, Issue 4, p. A414-A417
  • DOI: 10.1149/1.1454139

Characterization of the Lithium/Oxygen Organic Electrolyte Battery
journal, January 2002

  • Read, J.
  • Journal of The Electrochemical Society, Vol. 149, Issue 9, p. A1190-A1195
  • DOI: 10.1149/1.1498256

Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes
journal, August 2005


Ionic conductivity of NASICON-type conductors Na1.5M0.5Zr1.5(PO4)3 (M:Al3+, Ga3+, Cr3+, Sc3+, Fe3+, In3+, Yb3+, Y3+)
journal, December 1992


Electrical conductivity and Ti4+ ion substitution range in NASICON system
journal, July 1995


Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass–Ceramic
journal, January 2008

  • Thokchom, Joykumar S.; Gupta, Nutan; Kumar, Binod
  • Journal of The Electrochemical Society, Vol. 155, Issue 12, p. A915-A920
  • DOI: 10.1149/1.2988731

Li1.3Al0.3Ti1.7(PO4)3 filler effect on (PEO)LiClO4 solid polymer electrolyte
journal, January 2005

  • Wang, Yan-Jie; Pan, Yi
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 43, Issue 6, p. 743-751
  • DOI: 10.1002/polb.20371

LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials
journal, October 2003


Polymer composite electrolytes containing ionically active mesoporous SiO2 particles
journal, September 2007

  • Wang, Xiao-Liang; Mei, Ao; Li, Ming
  • Journal of Applied Physics, Vol. 102, Issue 5, Article No. 054907
  • DOI: 10.1063/1.2776251

Preparation and characterization of lithium-ion-conductive Li1.3Al0.3Ti1.7(PO4)3 thin films by the solution deposition
journal, February 2003