skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical amplification based on fluid partitioning

Abstract

A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

Inventors:
; ;
Issue Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1485053
Patent Number(s):
RE47,080
Application Number:
15/421,141
Assignee:
Lawrence Livermore National Security, LLC (Livermore, CA)
DOE Contract Number:  
W-7405-ENG-48
Resource Type:
Patent
Resource Relation:
Patent File Date: 2017 Jan 31
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Anderson, Brian L., Colston, Bill W., and Elkin, Christopher J. Chemical amplification based on fluid partitioning. United States: N. p., 2018. Web.
Anderson, Brian L., Colston, Bill W., & Elkin, Christopher J. Chemical amplification based on fluid partitioning. United States.
Anderson, Brian L., Colston, Bill W., and Elkin, Christopher J. Tue . "Chemical amplification based on fluid partitioning". United States. https://www.osti.gov/servlets/purl/1485053.
@article{osti_1485053,
title = {Chemical amplification based on fluid partitioning},
author = {Anderson, Brian L. and Colston, Bill W. and Elkin, Christopher J.},
abstractNote = {A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {10}
}

Patent:

Save / Share:

Works referenced in this record:

Inline thermo-cycler
patent, April 1998


Late-PCR
patent, April 2007


Nanoliter scale PCR with TaqMan detection
journal, May 1997

  • Kalinina, Olga; Lebedeva, Irina; Brown, James
  • Nucleic Acids Research, Vol. 25, Issue 10, p. 1999-2004
  • DOI: 10.1093/nar/25.10.1999

Formation of droplets using branch channels in a microfluidic circuit
conference, January 2002


All-terrain droplet actuation
journal, January 2008

  • Abdelgawad, Mohamed; Freire, Sergio L. S.; Yang, Hao
  • Lab on a Chip, Vol. 8, Issue 5
  • DOI: 10.1039/B801516C

The Contribution of Combinatorial Chemistry to Lead Generation An Interim Analysis
journal, July 2001


Klenow fragment and DNA polymerase α-primase fromserva calf thymus in water-in-oil microemulsions
journal, May 1998

  • Anarbaev, Rashid O.; Elepov, Ilja B.; Lavrik, Olga I.
  • Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, Vol. 1384, Issue 2
  • DOI: 10.1016/S0167-4838(98)00025-9

Thermocapillary valve for droplet production and sorting
journal, April 2007

  • Baroud, Charles N.; Delville, Jean-Pierre; Gallaire, Francois
  • Physical Review E, Vol. 75, Issue 4, Article No. 046302
  • DOI: 10.1103/PhysRevE.75.046302

On-Chip Single-Copy Real-Time Reverse-Transcription PCR in Isolated Picoliter Droplets
journal, March 2008

  • Beer, N. Reginald; Wheeler, Elizabeth K.; Lee-Houghton, Lorenna
  • Analytical Chemistry, Vol. 80, Issue 6, p. 1854-1858
  • DOI: 10.1021/ac800048k

On-Chip, Real-Time, Single-Copy Polymerase Chain Reaction in Picoliter Droplets
journal, November 2007

  • Beer, N. Reginald; Hindson, Benjamin J.; Wheeler, Elizabeth K.
  • Analytical Chemistry, Vol. 79, Issue 22, p. 8471-8475
  • DOI: 10.1021/ac701809w

A microfluidic droplet generator based on a piezoelectric actuator
journal, January 2009

  • Bransky, Avishay; Korin, Natanel; Khoury, Maria
  • Lab Chip, Vol. 9, Issue 4, p. 516-520
  • DOI: 10.1039/B814810D

Droplet-Based Microfluidics for Emulsion and Solvent Evaporation Synthesis of Monodisperse Mesoporous Silica Microspheres
journal, February 2008

  • Carroll, Nick J.; Rathod, Shailendra B.; Derbins, Erin
  • Langmuir, Vol. 24, Issue 3, p. 658-661
  • DOI: 10.1021/la7032516

Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms
journal, May 2008

  • Clausell-Tormos, Jenifer; Lieber, Diana; Baret, Jean-Christophe
  • Chemistry & Biology, Vol. 15, Issue 5, p. 427-437
  • DOI: 10.1016/j.chembiol.2008.04.004

Digital quantification of mutant DNA in cancer patients
journal, January 2007


Look before You Leap: Active Surveillance for Multidrug-Resistant Organisms
journal, April 2007

  • Weinstein, Robert A.; Diekema, Daniel J.; Edmond, Michael B.
  • Clinical Infectious Diseases, Vol. 44, Issue 8, p. 1101-1107
  • DOI: 10.1086/512820

Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations
journal, July 2003

  • Dressman, D.; Yan, H.; Traverso, G.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 15, p. 8817-8822
  • DOI: 10.1073/pnas.1133470100

Highly parallel genomic assays
journal, August 2006

  • Fan, Jian-Bing; Chee, Mark S.; Gunderson, Kevin L.
  • Nature Reviews Genetics, Vol. 7, Issue 8, p. 632-644
  • DOI: 10.1038/nrg1901

Coupling Microdroplet Microreactors with Mass Spectrometry: Reading the Contents of Single Droplets Online
journal, May 2009

  • Fidalgo, Luis M.; Whyte, Graeme; Ruotolo, Brandon T.
  • Angewandte Chemie International Edition, Vol. 48, Issue 20, p. 3665-3668
  • DOI: 10.1002/anie.200806103

Megapixel digital PCR
journal, July 2011

  • Heyries, Kevin A.; Tropini, Carolina; VanInsberghe, Michael
  • Nature Methods, Vol. 8, Issue 8
  • DOI: 10.1038/nmeth.1640

Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions
journal, September 1993

  • Higuchi, Russell; Fockler, Carita; Dollinger, Gavin
  • Nature Biotechnology, Vol. 11, Issue 9
  • DOI: 10.1038/nbt0993-1026

Digital quantification using amplified single-molecule detection
journal, August 2006

  • Jarvius, Jonas; Melin, Jonas; Göransson, Jenny
  • Nature Methods, Vol. 3, Issue 9
  • DOI: 10.1038/nmeth916

Indirect micromanipulation of single molecules in water-in-oil emulsion
journal, January 2001


High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets
journal, December 2008

  • Kiss, Margaret Macris; Ortoleva-Donnelly, Lori; Beer, N. Reginald
  • Analytical Chemistry, Vol. 80, Issue 23, p. 8975-8981
  • DOI: 10.1021/ac801276c

PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets
journal, September 2005

  • Kojima, Takaaki; Takei, Yoshiaki; Ohtsuka, Miharu
  • Nucleic Acids Research, Vol. 33, Issue 17, p. e150-e150
  • DOI: 10.1093/nar/gni143

Chemical Amplification: Continuous-Flow PCR on a Chip
journal, May 1998


High-Throughput Single Copy DNA Amplification and Cell Analysis in Engineered Nanoliter Droplets
journal, May 2008

  • Kumaresan, Palani; Yang, Chaoyong James; Cronier, Samantha A.
  • Analytical Chemistry, Vol. 80, Issue 10, p. 3522-3529
  • DOI: 10.1021/ac800327d

Overview: methods and applications for droplet compartmentalization of biology
journal, July 2006

  • Leamon, John H.; Link, Darren R.; Egholm, Michael
  • Nature Methods, Vol. 3, Issue 7
  • DOI: 10.1038/nmeth0706-541

Droplet Formation Utilizing Controllable Moving-Wall Structures for Double-Emulsion Applications
journal, June 2008

  • Lin, Yen-Heng; Lee, Chun-Hong; Lee, Gwo-Bin
  • Journal of Microelectromechanical Systems, Vol. 17, Issue 3, p. 573-581
  • DOI: 10.1109/JMEMS.2008.924273

Electric Control of Droplets in Microfluidic Devices
journal, April 2006

  • Link, Darren R.; Grasland-Mongrain, Erwan; Duri, Agnes
  • Angewandte Chemie International Edition, Vol. 45, Issue 16, p. 2556-2560
  • DOI: 10.1002/anie.200503540

Droplet-based synthetic method using microflow focusing and droplet fusion
journal, September 2006

  • Liu, Kan; Ding, Huijiang; Chen, Yong
  • Microfluidics and Nanofluidics, Vol. 3, Issue 2, p. 239-243
  • DOI: 10.1007/s10404-006-0121-8

Digital PCR for the molecular detection of fetal chromosomal aneuploidy
journal, July 2007

  • Lo, Y. M. D.; Lun, F. M. F.; Chan, K. C. A.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 32, p. 13116-13121
  • DOI: 10.1073/pnas.0705765104

Genome sequencing in microfabricated high-density picolitre reactors
journal, July 2005

  • Margulies, Marcel; Egholm, Michael; Altman, William E.
  • Nature, Vol. 437, Issue 7057, p. 376-380
  • DOI: 10.1038/nature03959

Development of A Microchamber Array for Picoliter PCR
journal, March 2001

  • Nagai, Hidenori; Murakami, Yuji; Morita, Yasutaka
  • Analytical Chemistry, Vol. 73, Issue 5, p. 1043-1047
  • DOI: 10.1021/ac000648u

Single-molecule PCR using water-in-oil emulsion
journal, April 2003

  • Nakano, Michihiko; Komatsu, Jun; Matsuura, Shun-ichi
  • Journal of Biotechnology, Vol. 102, Issue 2, p. 117-124
  • DOI: 10.1016/S0168-1656(03)00023-3

Continuous flow separations in microfluidic devices
journal, January 2007

  • Pamme, Nicole
  • Lab on a Chip, Vol. 7, Issue 12, p. 1644-1659
  • DOI: 10.1039/b712784g

Principle and applications of digital PCR
journal, January 2004


Controlling Nonspecific Protein Adsorption in a Plug-Based Microfluidic System by Controlling Interfacial Chemistry Using Fluorous-Phase Surfactants
journal, February 2005

  • Roach, L. Spencer; Song, Helen; Ismagilov, Rustem F.
  • Analytical Chemistry, Vol. 77, Issue 3
  • DOI: 10.1021/ac049061w

Mathematics of quantitative kinetic PCR and the application of standard curves
journal, August 2003

  • Rutledge, R. G.; Cote, C.
  • Nucleic Acids Research, Vol. 31, Issue 16, p. 93e-93
  • DOI: 10.1093/nar/gng093

Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications
journal, January 2004

  • Rutledge, R. G.
  • Nucleic Acids Research, Vol. 32, Issue 22, p. e178-e178
  • DOI: 10.1093/nar/gnh177

Miniaturized flow-through PCR with different template types in a silicon chip thermocycler
journal, January 2001

  • Schneegaß, Ivonne; Bräutigam, Reiner; Köhler, Johann Michael
  • Lab Chip, Vol. 1, Issue 1
  • DOI: 10.1039/b103846j

Digital PCR
journal, August 1999

  • Vogelstein, B.; Kinzler, K. W.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 16
  • DOI: 10.1073/pnas.96.16.9236

Amplification of complex gene libraries by emulsion PCR
journal, July 2006

  • Williams, Richard; Peisajovich, Sergio G.; Miller, Oliver J.
  • Nature Methods, Vol. 3, Issue 7, p. 545-550
  • DOI: 10.1038/nmeth896

Behavioral Modeling and Performance Evaluation of Microelectrofluidics-Based PCR Systems Using SystemC
journal, June 2004

  • Zhang, Tianhao; Chakrabarty, K.; Fair, R. B.
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 23, Issue 6, p. 843-858
  • DOI: 10.1109/TCAD.2004.828115

Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends
journal, June 2007

  • Zhang, Chunsun; Xing, Da
  • Nucleic Acids Research, Vol. 35, Issue 13, p. 4223-4237
  • DOI: 10.1093/nar/gkm389

Microparticle Concentration and Separation by Traveling-Wave Dielectrophoresis (twDEP) for Digital Microfluidics
journal, December 2007

  • Zhao, Yuejun; Yi, Ui-Chong; Cho, Sung Kwon
  • Journal of Microelectromechanical Systems, Vol. 16, Issue 6, p. 1472-1481
  • DOI: 10.1109/JMEMS.2007.906763

Heat integration in micro-fluidic devices
book, January 2006