skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Systems and methods to maintain optimum stoichiometry for reactively sputtered films

Abstract

The present invention relates to systems and methods for preparing reactively sputtered films. The films are generally thin transition metal oxide (TMO) films having an optimum stoichiometry for any useful device (e.g., a sub-stoichiometric thin film for a memristor device). Described herein are systems, methods, and calibrations processes that employ rapid control of partial pressures to obtain the desired film.

Issue Date:
Research Org.:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1478528
Patent Number(s):
10,074,522
Application Number:
14/671,284
Assignee:
National Technology & Engineering Solutions of Sandia, LLC (Albuquerque, NM)
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Mar 27
Country of Publication:
United States
Language:
English

Citation Formats

. Systems and methods to maintain optimum stoichiometry for reactively sputtered films. United States: N. p., 2018. Web.
. Systems and methods to maintain optimum stoichiometry for reactively sputtered films. United States.
. Tue . "Systems and methods to maintain optimum stoichiometry for reactively sputtered films". United States. https://www.osti.gov/servlets/purl/1478528.
@article{osti_1478528,
title = {Systems and methods to maintain optimum stoichiometry for reactively sputtered films},
author = {},
abstractNote = {The present invention relates to systems and methods for preparing reactively sputtered films. The films are generally thin transition metal oxide (TMO) films having an optimum stoichiometry for any useful device (e.g., a sub-stoichiometric thin film for a memristor device). Described herein are systems, methods, and calibrations processes that employ rapid control of partial pressures to obtain the desired film.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {9}
}

Patent:

Save / Share:

Works referenced in this record:

Reactive gas control of non-stable plasma conditions
journal, April 2006

  • Bellido-González, V.; Daniel, B.; Counsell, J.
  • Thin Solid Films, Vol. 502, Issue 1-2, p. 34-39
  • DOI: 10.1016/j.tsf.2005.07.230

Modeling of reactive sputtering of compound materials
journal, March 1987

  • Berg, S.; Blom, H‐O.; Larsson, T.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 5, Issue 2, p. 202-207
  • DOI: 10.1116/1.574104

Reactive sputter deposition of titanium dioxide
journal, February 2000


Partial pressure control of reactively sputtered titanium nitride
journal, May 1985

  • Hmiel, A. F.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 3, Issue 3, p. 592-595
  • DOI: 10.1116/1.572957

Nanoscale Memristor Device as Synapse in Neuromorphic Systems
journal, April 2010

  • Jo, Sung Hyun; Chang, Ting; Ebong, Idongesit
  • Nano Letters, Vol. 10, Issue 4, p. 1297-1301
  • DOI: 10.1021/nl904092h

A physical model for eliminating instabilities in reactive sputtering
journal, May 1988

  • Larsson, T.; Blom, H‐O.; Nender, C.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 6, Issue 3, p. 1832-1836
  • DOI: 10.1116/1.575264

A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures
journal, July 2011

  • Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo
  • Nature Materials, Vol. 10, Issue 8, p. 625-630
  • DOI: 10.1038/nmat3070

A CMOS Compatible, Forming Free TaOx ReRAM
journal, August 2013

  • Lohn, A. J.; Stevens, J. E.; Mickel, P. R.
  • ECS Transactions, Vol. 58, Issue 5, p. 59-65
  • DOI: 10.1149/05805.0059ecst

Enhanced sputtering of titanium oxide, nitride and oxynitride thin films by the reactive gas pulsing technique
journal, July 2001


Continuous Electrical Tuning of the Chemical Composition of TaOx-Based Memristors
journal, February 2012

  • Miao, Feng; Yi, Wei; Goldfarb, Ilan
  • ACS Nano, Vol. 6, Issue 3, p. 2312-2318
  • DOI: 10.1021/nn2044577

Isothermal Switching and Detailed Filament Evolution in Memristive Systems
journal, April 2014

  • Mickel, Patrick R.; Lohn, Andrew J.; James, Conrad D.
  • Advanced Materials, Vol. 26, Issue 26, p. 4486-4490
  • DOI: 10.1002/adma.201306182

Reactive sputtering characteristics of silicon in an ArN2 mixture
journal, March 1986


Statistical insight into controlled forming and forming free stacks for HfOx RRAM
journal, September 2013


Reactive D.C. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films
journal, November 1979


Reactive high rate D.C. sputtering: Deposition rate, stoichiometry and features of TiOx and TiNx films with respect to the target mode
journal, January 1984


Control of reactive sputtering processes
journal, November 2005

  • Sproul, W. D.; Christie, D. J.; Carter, D. C.
  • Thin Solid Films, Vol. 491, Issue 1-2, p. 1-17
  • DOI: 10.1016/j.tsf.2005.05.022

High rate reactive sputtering process control
journal, December 1987


Erratum: The missing memristor found
journal, June 2009

  • Strukov, Dmitri B.; Snider, Gregory S.; Stewart, Duncan R.
  • Nature, Vol. 459, Issue 7250, p. 1154-1154
  • DOI: 10.1038/nature08166

Nanoionics-based resistive switching memories
journal, November 2007

  • Waser, Rainer; Aono, Masakazu
  • Nature Materials, Vol. 6, Issue 11, p. 833-840
  • DOI: 10.1038/nmat2023

Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges
journal, July 2009

  • Waser, Rainer; Dittmann, Regina; Staikov, Georgi
  • Advanced Materials, Vol. 21, Issue 25-26, p. 2632-2663
  • DOI: 10.1002/adma.200900375

Memristive devices for computing
journal, January 2013

  • Yang, J. Joshua; Strukov, Dmitri B.; Stewart, Duncan R.
  • Nature Nanotechnology, Vol. 8, Issue 1, p. 13-24
  • DOI: 10.1038/nnano.2012.240

Metal oxide memories based on thermochemical and valence change mechanisms
journal, February 2012

  • Yang, J. Joshua; Inoue, Isao H.; Mikolajick, Thomas
  • MRS Bulletin, Vol. 37, Issue 2, p. 131-137
  • DOI: 10.1557/mrs.2011.356

Analytical estimations for thermal crosstalk, retention, and scaling limits in filamentary resistive memory
journal, June 2014

  • Lohn, Andrew J.; Mickel, Patrick R.; Marinella, Matthew J.
  • Journal of Applied Physics, Vol. 115, Issue 23, Article No. 234507
  • DOI: 10.1063/1.4885045

Degenerate resistive switching and ultrahigh density storage in resistive memory
journal, September 2014

  • Lohn, Andrew J.; Mickel, Patrick R.; James, Conrad D.
  • Applied Physics Letters, Vol. 105, Issue 10, Article No. 103501
  • DOI: 10.1063/1.4895526

Dynamics of percolative breakdown mechanism in tantalum oxide resistive switching
journal, October 2013

  • Lohn, Andrew J.; Mickel, Patrick R.; Marinella, Matthew J.
  • Applied Physics Letters, Vol. 103, Issue 17, Article No. 173503
  • DOI: 10.1063/1.4826277

Mechanism of electrical shorting failure mode in resistive switching
journal, July 2014

  • Lohn, Andrew J.; Mickel, Patrick R.; Marinella, Matthew J.
  • Journal of Applied Physics, Vol. 116, Issue 3, Article No. 034506
  • DOI: 10.1063/1.4890635

Modeling of filamentary resistive memory by concentric cylinders with variable conductivity
journal, November 2014

  • Lohn, Andrew J.; Mickel, Patrick R.; Marinella, Matthew J.
  • Applied Physics Letters, Vol. 105, Issue 18, Article No. 183511
  • DOI: 10.1063/1.4901351

Optimizing TaOx memristor performance and consistency within the reactive sputtering “forbidden region”
journal, August 2013

  • Lohn, Andrew J.; Stevens, James E.; Mickel, Patrick R.
  • Applied Physics Letters, Vol. 103, Issue 6, Article No. 063502
  • DOI: 10.1063/1.4817927

A physical model of switching dynamics in tantalum oxide memristive devices
journal, June 2013

  • Mickel, Patrick R.; Lohn, Andrew J.; Joon Choi, Byung
  • Applied Physics Letters, Vol. 102, Issue 22, Article No. 223502
  • DOI: 10.1063/1.4809530

Detection and characterization of multi-filament evolution during resistive switching
journal, August 2014

  • Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.
  • Applied Physics Letters, Vol. 105, Issue 5, Article No. 053503
  • DOI: 10.1063/1.4892471

Memristive switching: physical mechanisms and applications
journal, April 2014

  • Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.
  • Modern Physics Letters B, Vol. 28, Issue 10, Article No. 1430003
  • DOI: 10.1142/S0217984914300038

Multilayer memristive/memcapacitive devices with engineered conduction fronts
journal, June 2013

  • Mickel, Patrick R.; James, Conrad D.
  • The European Physical Journal Applied Physics, Vol. 62, Issue 3, Article No. 30102
  • DOI: 10.1051/epjap/2013130059

Spectromicroscopy of tantalum oxide memristors
journal, June 2011

  • Strachan, John Paul; Medeiros-Ribeiro, Gilberto; Yang, J. Joshua
  • Applied Physics Letters, Vol. 98, Issue 24, Article No. 242114
  • DOI: 10.1063/1.3599589

Reactive sputtering of substoichiometric Ta2Ox for resistive memory applications
journal, March 2014

  • Stevens, James E.; Lohn, Andrew J.; Decker, Seth A.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, Issue 2, Article No. 021501
  • DOI: 10.1116/1.4828701

Chemical insight into origin of forming-free resistive random-access memory devices
journal, September 2011

  • Wu, X.; Fang, Z.; Li, K.
  • Applied Physics Letters, Vol. 99, Issue 13, Article No. 133504
  • DOI: 10.1063/1.3645623

Engineering nonlinearity into memristors for passive crossbar applications
journal, March 2012

  • Joshua Yang, J.; Zhang, M.-X.; Pickett, Matthew D.
  • Applied Physics Letters, Vol. 100, Issue 11, Article No. 113501
  • DOI: 10.1063/1.3693392