skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plasmonic nanostructures for conversion of optical power to electrical power

Abstract

A plasmoelectric device for conversion of optical power to direct current (DC) electrical power includes a first plasmonic nanostructure having a first resonance value and a second plasmonic nanostructure having a second resonance value. The first and second plasmonic nanostructures are electrically coupled and the first plasmonic nanostructure is configured to receive irradiation at a first irradiation value and the second plasmonic nanostructure is configured to receive irradiation at a second irradiation value, to induce charge transfer between the first and second plasmonic nanostructures.

Inventors:
;
Issue Date:
Research Org.:
California Inst. of Technology (CalTech), Pasadena, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1477191
Patent Number(s):
10,075,104
Application Number:
13/679,995
Assignee:
CALIFORNIA INSTITUTE OF TECHNOLOGY (Pasadena, CA)
DOE Contract Number:  
SC0001293
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Nov 16
Country of Publication:
United States
Language:
English

Citation Formats

Sheldon, Matthew, and Atwater, Harry A. Plasmonic nanostructures for conversion of optical power to electrical power. United States: N. p., 2018. Web.
Sheldon, Matthew, & Atwater, Harry A. Plasmonic nanostructures for conversion of optical power to electrical power. United States.
Sheldon, Matthew, and Atwater, Harry A. Tue . "Plasmonic nanostructures for conversion of optical power to electrical power". United States. https://www.osti.gov/servlets/purl/1477191.
@article{osti_1477191,
title = {Plasmonic nanostructures for conversion of optical power to electrical power},
author = {Sheldon, Matthew and Atwater, Harry A.},
abstractNote = {A plasmoelectric device for conversion of optical power to direct current (DC) electrical power includes a first plasmonic nanostructure having a first resonance value and a second plasmonic nanostructure having a second resonance value. The first and second plasmonic nanostructures are electrically coupled and the first plasmonic nanostructure is configured to receive irradiation at a first irradiation value and the second plasmonic nanostructure is configured to receive irradiation at a second irradiation value, to induce charge transfer between the first and second plasmonic nanostructures.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {9}
}

Patent:

Save / Share:

Works referenced in this record:

Strongly Interacting Plasmon Nanoparticle Pairs:  From Dipole−Dipole Interaction to Conductively Coupled Regime
journal, September 2004

  • Atay, Tolga; Song, Jung-Hoon; Nurmikko, Arto V.
  • Nano Letters, Vol. 4, Issue 9, p. 1627-1631
  • DOI: 10.1021/nl049215n

Voltage-Induced Adsorbate Damping of Single Gold Nanorod Plasmons in Aqueous Solution
journal, February 2012

  • Dondapati, S. K.; Ludemann, M.; Müller, R.
  • Nano Letters, Vol. 12, Issue 3, p. 1247-1252
  • DOI: 10.1021/nl203673g

Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals
journal, October 2011

  • Garcia, Guillermo; Buonsanti, Raffaella; Runnerstrom, Evan L.
  • Nano Letters, Vol. 11, Issue 10, p. 4415-4420
  • DOI: 10.1021/nl202597n

Surface plasmons as a probe of the electrochemical interface
journal, December 1980


Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine
journal, December 2008

  • Jain, Prashant K.; Huang, Xiaohua; El-Sayed, Ivan H.
  • Accounts of Chemical Research, Vol. 41, Issue 12, p. 1578-1586
  • DOI: 10.1021/ar7002804

Photodetection with Active Optical Antennas
journal, May 2011

  • Knight, M. W.; Sobhani, H.; Nordlander, P.
  • Science, Vol. 332, Issue 6030, p. 702-704
  • DOI: 10.1126/science.1203056

Localized surface plasmon resonances arising from free carriers in doped quantum dots
journal, April 2011

  • Luther, Joseph M.; Jain, Prashant K.; Ewers, Trevor
  • Nature Materials, Vol. 10, Issue 5, p. 361-366
  • DOI: 10.1038/nmat3004

Ultrafast active plasmonics
journal, December 2008

  • MacDonald, Kevin F.; Sámson, Zsolt L.; Stockman, Mark I.
  • Nature Photonics, Vol. 3, Issue 1, p. 55-58
  • DOI: 10.1038/nphoton.2008.249

Plasmonics-A Route to Nanoscale Optical Devices
journal, September 2001


Charge distribution induced inside complex plasmonic nanoparticles
journal, January 2010

  • Marty, R.; Baffou, G.; Arbouet, A.
  • Optics Express, Vol. 18, Issue 3, p. 3035-3044
  • DOI: 10.1364/OE.18.003035

Introduction to Plasmonics
journal, June 2011

  • Odom, Teri W.; Schatz, George C.
  • Chemical Reviews, Vol. 111, Issue 6, p. 3667-3668
  • DOI: 10.1021/cr2001349

Plasmonics Applied
journal, November 2008


Optical properties of metallic films for vertical-cavity optoelectronic devices
journal, January 1998

  • Rakić, Aleksandar D.; Djurišić, Aleksandra B.; Elazar, Jovan M.
  • Applied Optics, Vol. 37, Issue 22, p. 5271-5283
  • DOI: 10.1364/AO.37.005271

Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes
journal, February 2007

  • Reinhard, B. M.; Sheikholeslami, S.; Mastroianni, A.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 8, p. 2667-2672
  • DOI: 10.1073/pnas.0607826104

Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices
journal, April 2013

  • Wang, Fuming; Melosh, Nicholas A.
  • Nature Communications, Vol. 4, Article No. 1711
  • DOI: 10.1038/ncomms2728

Small Hysteresis Nanocarbon-Based Integrated Circuits on Flexible and Transparent Plastic Substrate
journal, March 2011

  • Yu, Woo Jong; Lee, Si Young; Chae, Sang Hoon
  • Nano Letters, Vol. 11, Issue 3, p. 1344-1350
  • DOI: 10.1021/nl104488z