skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery

Abstract

An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

Inventors:
Issue Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1435634
Patent Number(s):
9,946,931
Application Number:
15/133,387
Assignee:
Los Alamos National Security, LLC (Los Alamos, NM) LANL
DOE Contract Number:  
AC52-06NA25396
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Apr 20
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Moody, Daniela Irina. Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery. United States: N. p., 2018. Web.
Moody, Daniela Irina. Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery. United States.
Moody, Daniela Irina. Tue . "Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery". United States. https://www.osti.gov/servlets/purl/1435634.
@article{osti_1435634,
title = {Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery},
author = {Moody, Daniela Irina},
abstractNote = {An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {4}
}

Patent:

Save / Share:

Works referenced in this record:

On Shift-Invariant Sparse Coding
book, January 2004

  • Blumensath, Thomas; Davies, Mike; Hutchison, David
  • Independent Component Analysis and Blind Signal Separation, p. 1205-1212
  • DOI: 10.1007/978-3-540-30110-3_152

Dictionary Learning with Large Step Gradient Descent for Sparse Representations
book, January 2012

  • Mailh�, Boris; Plumbley, Mark D.; Theis, Fabian
  • Latent Variable Analysis and Signal Separation, p. 231-238
  • DOI: 10.1007/978-3-642-28551-6_29

General design algorithm for sparse frame expansions
journal, January 2006


Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities
journal, August 2000

  • He, B. S.; Yang, H.; Wang, S. L.
  • Journal of Optimization Theory and Applications, Vol. 106, Issue 2, p. 337-356
  • DOI: 10.1023/A:1004603514434

Deconvolutional networks
conference, June 2010

  • Zeiler, Matthew D.; Krishnan, Dilip; Taylor, Graham W.
  • 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
  • DOI: 10.1109/CVPR.2010.5539957

Supervised translation-invariant sparse coding
conference, June 2010

  • Yang, Jianchao; Yu, Kai; Huang, Thomas
  • 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
  • DOI: 10.1109/CVPR.2010.5539958

Learning mid-level features for recognition
conference, June 2010

  • Boureau, Y-Lan; Bach, Francis; LeCun, Yann
  • 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
  • DOI: 10.1109/CVPR.2010.5539963

Fast Convolutional Sparse Coding
conference, June 2013

  • Bristow, Hilton; Eriksson, Anders; Lucey, Simon
  • 2013 IEEE Conference on Computer Vision and Pattern Recognition
  • DOI: 10.1109/CVPR.2013.57

Method of optimal directions for frame design
conference, January 1999

  • Engan, K.; Aase, S. O.; Hakon Husoy, J.
  • 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing
  • DOI: 10.1109/ICASSP.1999.760624

Unsupervised learning of sparse and shift-invariant decompositions of polyphonic music
conference, January 2004

  • Blumensath, T.; Davies, M.
  • 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing
  • DOI: 10.1109/ICASSP.2004.1327156

Image compression using learned dictionaries by RLS-DLA and compared with K-SVD
conference, May 2011

  • Skretting, Karl; Engan, Kjersti
  • 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  • DOI: 10.1109/ICASSP.2011.5946782

Non-local sparse models for image restoration
conference, September 2009

  • Mairal, Julien; Bach, Francis; Ponce, Jean
  • 2009 IEEE 12th International Conference on Computer Vision
  • DOI: 10.1109/ICCV.2009.5459452

Adaptive deconvolutional networks for mid and high level feature learning
conference, November 2011

  • Zeiler, Matthew D.; Taylor, Graham W.; Fergus, Rob
  • 2011 International Conference on Computer Vision
  • DOI: 10.1109/ICCV.2011.6126474

Multi-Scale Dictionary Learning Using Wavelets
journal, September 2011

  • Ophir, Boaz; Lustig, Michael; Elad, Michael
  • IEEE Journal of Selected Topics in Signal Processing, Vol. 5, Issue 5, p. 1014-1024
  • DOI: 10.1109/JSTSP.2011.2155032

Explicit Shift-Invariant Dictionary Learning
journal, January 2014

  • Rusu, Cristian; Dumitrescu, Bogdan; Tsaftaris, Sotirios A.
  • IEEE Signal Processing Letters, Vol. 21, Issue 1, p. 6-9
  • DOI: 10.1109/LSP.2013.2288788

Fast Image Recovery Using Variable Splitting and Constrained Optimization
journal, September 2010

  • Afonso, Manya V.; Bioucas-Dias, Jos� M.; Figueiredo, M�rio A. T.
  • IEEE Transactions on Image Processing, Vol. 19, Issue 9, p. 2345-2356
  • DOI: 10.1109/TIP.2010.2047910

An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems
journal, March 2011

  • Afonso, M. V.; Bioucas-Dias, Jos� M.; Figueiredo, M�rio A. T.
  • IEEE Transactions on Image Processing, Vol. 20, Issue 3, p. 681-695
  • DOI: 10.1109/TIP.2010.2076294

Task-Driven Dictionary Learning
journal, April 2012

  • Mairal, J.; Bach, F.; Ponce, J.
  • IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, Issue 4, p. 791-804
  • DOI: 10.1109/TPAMI.2011.156

Sparse and shift-Invariant representations of music
journal, January 2006

  • Blumensath, T.; Davies, M.
  • IEEE Transactions on Audio, Speech and Language Processing, Vol. 14, Issue 1, p. 50-57
  • DOI: 10.1109/TSA.2005.860346

From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
journal, February 2009

  • Bruckstein, Alfred M.; Donoho, David L.; Elad, Michael
  • SIAM Review, Vol. 51, Issue 1, p. 34-81
  • DOI: 10.1137/060657704

Updating the Inverse of a Matrix
journal, June 1989

  • Hager, William W.
  • SIAM Review, Vol. 31, Issue 2, p. 221-239
  • DOI: 10.1137/1031049

Atomic Decomposition by Basis Pursuit
journal, January 1998

  • Chen, Scott Shaobing; Donoho, David L.; Saunders, Michael A.
  • SIAM Journal on Scientific Computing, Vol. 20, Issue 1, p. 33-61
  • DOI: 10.1137/S1064827596304010