skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanostructured layers of thermoelectric materials

Abstract

This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.

Inventors:
; ; ; ; ; ;
Issue Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1418824
Patent Number(s):
9,882,108
Application Number:
15/254,412
Assignee:
The Regents of the University of California (Oakland, CA)
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Sep 01
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Urban, Jeffrey J., Lynch, Jared, Coates, Nelson, Forster, Jason, Sahu, Ayaskanta, Chabinyc, Michael, and Russ, Boris. Nanostructured layers of thermoelectric materials. United States: N. p., 2018. Web.
Urban, Jeffrey J., Lynch, Jared, Coates, Nelson, Forster, Jason, Sahu, Ayaskanta, Chabinyc, Michael, & Russ, Boris. Nanostructured layers of thermoelectric materials. United States.
Urban, Jeffrey J., Lynch, Jared, Coates, Nelson, Forster, Jason, Sahu, Ayaskanta, Chabinyc, Michael, and Russ, Boris. Tue . "Nanostructured layers of thermoelectric materials". United States. https://www.osti.gov/servlets/purl/1418824.
@article{osti_1418824,
title = {Nanostructured layers of thermoelectric materials},
author = {Urban, Jeffrey J. and Lynch, Jared and Coates, Nelson and Forster, Jason and Sahu, Ayaskanta and Chabinyc, Michael and Russ, Boris},
abstractNote = {This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {1}
}

Patent:

Save / Share:

Works referenced in this record:

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

Effect of Interfacial Properties on Polymer-Nanocrystal Thermoelectric Transport
journal, January 2013

  • Coates, Nelson E.; Yee, Shannon K.; McCulloch, Bryan
  • Advanced Materials, Vol. 25, Issue 11, p. 1629-1633
  • DOI: 10.1002/adma.201203915

The Effects of the Size and the Doping Concentration on the Power Factor of n-type Lead Telluride Nanocrystals for Thermoelectric Energy Conversion
journal, February 2014

  • Fang, Haiyu; Luo, Zhiqiang; Yang, Haoran
  • Nano Letters, Vol. 14, Issue 3, p. 1153-1157
  • DOI: 10.1021/nl403677k

Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States
journal, July 2008

  • Heremans, J. P.; Jovovic, V.; Toberer, E. S.
  • Science, Vol. 321, Issue 5888, p. 554-557
  • DOI: 10.1126/science.1159725

Fabrication of Bismuth Telluride Thermoelectric Films Containing Conductive Polymers Using a Printing Method
journal, February 2013

  • Kato, Kunihisa; Hagino, Harutoshi; Miyazaki, Koji
  • Journal of Electronic Materials, Vol. 42, Issue 7, p. 1313-1318
  • DOI: 10.1007/s11664-012-2420-z

Tuning the Excitonic and Plasmonic Properties of Copper Chalcogenide Nanocrystals
journal, January 2012

  • Kriegel, Ilka; Jiang, Chengyang; Rodríguez-Fernández, Jessica
  • Journal of the American Chemical Society, Vol. 134, Issue 3, p. 1583-1590
  • DOI: 10.1021/ja207798q

Copper ion liquid-like thermoelectrics
journal, March 2012

  • Liu, Huili; Shi, Xun; Xu, Fangfang
  • Nature Materials, Vol. 11, Issue 5, p. 422-425
  • DOI: 10.1038/nmat3273

Ligand Coupling Symmetry Correlates with Thermopower Enhancement in Small-Molecule/Nanocrystal Hybrid Materials
journal, September 2014

  • Lynch, Jared; Kotiuga, Michele; Doan-Nguyen, Vicky V. T.
  • ACS Nano, Vol. 8, Issue 10, p. 10528-10536
  • DOI: 10.1021/nn503972v

Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies
journal, August 2000


Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2– as Surface Ligands
journal, July 2011

  • Nag, Angshuman; Kovalenko, Maksym V.; Lee, Jong-Soo
  • Journal of the American Chemical Society, Vol. 133, Issue 27, p. 10612-10620
  • DOI: 10.1021/ja2029415

Materials and Mechanics for Stretchable Electronics
journal, March 2010


Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles
journal, November 2009

  • Scheele, Marcus; Oeschler, Niels; Meier, Katrin
  • Advanced Functional Materials, Vol. 19, Issue 21, p. 3476-3483
  • DOI: 10.1002/adfm.200901261

Improved thermoelectric cooling based on the Thomson effect
journal, July 2012

  • Snyder, G. Jeffrey; Toberer, Eric S.; Khanna, Raghav
  • Physical Review B, Vol. 86, Issue 4, Article No. 045202
  • DOI: 10.1103/PhysRevB.86.045202

PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
journal, October 2005


Prospects for thermoelectricity in quantum dot hybrid arrays
journal, December 2015


Enhanced Thermopower in PbSe Nanocrystal Quantum Dot Superlattices
journal, August 2008

  • Wang, Robert Y.; Feser, Joseph P.; Lee, Jong-Soo
  • Nano Letters, Vol. 8, Issue 8, p. 2283-2288
  • DOI: 10.1021/nl8009704

Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking
journal, January 2015

  • Yang, Haoran; Bahk, Je-Hyeong; Day, Tristan
  • Nano Letters, Vol. 15, Issue 2, p. 1349-1355
  • DOI: 10.1021/nl504624r

Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites
journal, January 2012

  • Yu, Bo; Zebarjadi, Mona; Wang, Hui
  • Nano Letters, Vol. 12, Issue 4, p. 2077-2082
  • DOI: 10.1021/nl3003045

Rational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties
journal, November 2011

  • Zhang, Genqiang; Kirk, Benjamin; Jauregui, Luis A.
  • Nano Letters, Vol. 12, Issue 1, p. 56-60
  • DOI: 10.1021/nl202935k

Design Principle of Telluride-Based Nanowire Heterostructures for Potential Thermoelectric Applications
journal, June 2012

  • Zhang, Genqiang; Fang, Haiyu; Yang, Haoran
  • Nano Letters, Vol. 12, Issue 7, p. 3627-3633
  • DOI: 10.1021/nl301327d

High thermoelectric performance by resonant dopant indium in nanostructured SnTe
journal, July 2013

  • Zhang, Q.; Liao, B.; Lan, Y.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 33, p. 13261-13266
  • DOI: 10.1073/pnas.1305735110

Modulation of Thermoelectric Power Factor via Radial Dopant Inhomogeneity in B-Doped Si Nanowires
journal, August 2014

  • Zhuge, Fuwei; Yanagida, Takeshi; Fukata, Naoki
  • Journal of the American Chemical Society, Vol. 136, Issue 40, p. 14100-14106
  • DOI: 10.1021/ja5055884