skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gallium beam lithography for superconductive structure formation

Abstract

The present invention relates to the use of gallium beam lithography to form superconductive structures. Generally, the method includes exposing a surface to gallium to form an implanted region and then removing material adjacent to and/or below that implanted region. In particular embodiments, the methods herein provide microstructures and nanostructures in any useful substrate, such as those including niobium, tantalum, tungsten, or titanium.

Inventors:
;
Issue Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1418806
Patent Number(s):
9,882,113
Application Number:
14/742,505
Assignee:
National Technology & Engineering Solutions of Sandia, LLC (Albuquerque, NM)
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Jun 17
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Henry, Michael David, and Lewis, Rupert M. Gallium beam lithography for superconductive structure formation. United States: N. p., 2018. Web.
Henry, Michael David, & Lewis, Rupert M. Gallium beam lithography for superconductive structure formation. United States.
Henry, Michael David, and Lewis, Rupert M. Tue . "Gallium beam lithography for superconductive structure formation". United States. https://www.osti.gov/servlets/purl/1418806.
@article{osti_1418806,
title = {Gallium beam lithography for superconductive structure formation},
author = {Henry, Michael David and Lewis, Rupert M.},
abstractNote = {The present invention relates to the use of gallium beam lithography to form superconductive structures. Generally, the method includes exposing a surface to gallium to form an implanted region and then removing material adjacent to and/or below that implanted region. In particular embodiments, the methods herein provide microstructures and nanostructures in any useful substrate, such as those including niobium, tantalum, tungsten, or titanium.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {1}
}

Patent:

Save / Share:

Works referenced in this record:

Fabrication of Nb/AlO/sub x//Nb tunnel junctions using focused ion beam implanted Nb patterning (FINP) technique
journal, March 1993

  • Akaike, H.; Fujimaki, A.; Takai, Y.
  • IEEE Transactions on Applied Superconductivity, Vol. 3, Issue 1, p. 2187-2190
  • DOI: 10.1109/77.233937

Fabrication of submicron Nb/AlO/sub x/-Al/Nb tunnel junctions using focused ion beam implanted Nb patterning (FINP) technique
journal, June 1995

  • Akaike, H.; Watanabe, T.; Nagai, N.
  • IEEE Transactions on Appiled Superconductivity, Vol. 5, Issue 2, p. 2310-2313
  • DOI: 10.1109/77.403047

Characterization of Si nanowires fabricated by Ga+ FIB implantation and subsequent selective wet etching
journal, August 2011

  • Böttger, R.; Bischoff, L.; Schmidt, B.
  • Journal of Micromechanics and Microengineering, Vol. 21, Issue 9, Article No. 095025
  • DOI: 10.1088/0960-1317/21/9/095025

Silicon nanowire based Pirani sensor for vacuum measurements
journal, October 2012

  • Brun, T.; Mercier, D.; Koumela, A.
  • Applied Physics Letters, Vol. 101, Issue 18, Article No. 183506
  • DOI: 10.1063/1.4765665

The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching
journal, January 2009


Josephson junction simulation of neurons
journal, July 2010

  • Crotty, Patrick; Schult, Dan; Segall, Ken
  • Physical Review E, Vol. 82, Issue 1, Article No. 011914
  • DOI: 10.1103/PhysRevE.82.011914

Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures
journal, August 2002

  • de Boer, M. J.; Gardeniers, J. G. E.; Jansen, H. V.
  • Journal of Microelectromechanical Systems, Vol. 11, Issue 4, p. 385-401
  • DOI: 10.1109/JMEMS.2002.800928

Optomechanical crystals
journal, October 2009

  • Eichenfield, Matt; Chan, Jasper; Camacho, Ryan M.
  • Nature, Vol. 462, Issue 7269, p. 78-82
  • DOI: 10.1038/nature08524

Nanoelectromechanical systems
journal, June 2005

  • Ekinci, K. L.; Roukes, M. L.
  • Review of Scientific Instruments, Vol. 76, Issue 6, Article No. 061101
  • DOI: 10.1063/1.1927327

Materials for superconducting nanowires for quantum phase-slip devices
journal, March 2011

  • Fenton, J. C.; Webster, C. H.; Warburton, P. A.
  • Journal of Physics: Conference Series, Vol. 286, Article No. 012024
  • DOI: 10.1088/1742-6596/286/1/012024

Exploration of the ultimate patterning potential achievable with high resolution focused ion beams
journal, January 2005


Transport in superconducting niobium films for radio frequency applications
journal, April 2005

  • Halbritter, J.
  • Journal of Applied Physics, Vol. 97, Issue 8, Article No. 083904
  • DOI: 10.1063/1.1874292

Ga lithography in sputtered niobium for superconductive micro and nanowires
journal, August 2014

  • Henry, M. David; Wolfley, Steve; Monson, Todd
  • Applied Physics Letters, Vol. 105, Issue 7, Article No. 072601
  • DOI: 10.1063/1.4893446

Ga+ beam lithography for nanoscale silicon reactive ion etching
journal, May 2010


Ga+ beam lithography for suspended lateral beams and nanowires
journal, November 2010

  • Henry, M. David; Shearn, Michael; Scherer, Axel
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 28, Issue 6, p. C6F26-C6F30
  • DOI: 10.1116/1.3497013

Hermetic wafer-level packaging for RF MEMs: Effects on resonator performance
conference, May 2012

  • Henry, M. David; Greth, K. Douglas; Nguyen, Janet
  • 2012 IEEE 62nd Electronic Components and Technology Conference
  • DOI: 10.1109/ECTC.2012.6248856

Silicon nanowire pirani sensor fabricated using FIB lithography
conference, June 2013


Stress dependent oxidation of sputtered niobium and effects on superconductivity
journal, February 2014

  • David Henry, M.; Wolfley, Steve; Monson, Todd
  • Journal of Applied Physics, Vol. 115, Issue 8, Article No. 083903
  • DOI: 10.1063/1.4866554

Ultra-low-power superconductor logic
journal, May 2011

  • Herr, Quentin P.; Herr, Anna Y.; Oberg, Oliver T.
  • Journal of Applied Physics, Vol. 109, Issue 10, Article No. 103903
  • DOI: 10.1063/1.3585849

Black silicon method: X. A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment
journal, February 2009

  • Jansen, H. V.; de Boer, M. J.; Unnikrishnan, S.
  • Journal of Micromechanics and Microengineering, Vol. 19, Issue 3, Article No. 033001
  • DOI: 10.1088/0960-1317/19/3/033001

Fabrication of mesoscopic superconducting Nb wires using conventional electron-beam lithographic techniques
journal, January 2002

  • Kim, Nam; Hansen, Klavs; Toppari, Jussi
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 20, Issue 1, Article No. 386
  • DOI: 10.1116/1.1445168

FIB processing of silicon in the nanoscale regime
journal, March 2003

  • Lugstein, A.; Basnar, B.; Smoliner, J.
  • Applied Physics A: Materials Science & Processing, Vol. 76, Issue 4, p. 545-548
  • DOI: 10.1007/s00339-002-1890-x

Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor
journal, January 1991

  • Mastrangelo, C. H.; Muller, R. S.
  • IEEE Journal of Solid-State Circuits, Vol. 26, Issue 12, p. 1998-2007
  • DOI: 10.1109/4.104194

SiOxFy passivation layer in silicon cryoetching
journal, November 2005

  • Mellhaoui, X.; Dussart, R.; Tillocher, T.
  • Journal of Applied Physics, Vol. 98, Issue 10, Article No. 104901
  • DOI: 10.1063/1.2133896

Amorphous Nb-Si Barrier Junctions for Voltage Standard and Digital Applications
journal, June 2009

  • Olaya, D.; Dresselhaus, P. D.; Benz, S. P.
  • IEEE Transactions on Applied Superconductivity, Vol. 19, Issue 3, p. 144-148
  • DOI: 10.1109/TASC.2009.2018254

Fabrication of Si microstructures using focused ion beam implantation and reactive ion etching
journal, January 2008

  • Qian, H. X.; Zhou, Wei; Miao, Jianmin
  • Journal of Micromechanics and Microengineering, Vol. 18, Issue 3, Article No. 035003
  • DOI: 10.1088/0960-1317/18/3/035003

Processing of silicon nanostructures by Ga+ resistless lithography and reactive ion etching
journal, October 2013


Etch Rate Retardation of Ga + -Ion Beam-Irradiated Silicon
journal, January 2005

  • Schmidt, B.; Oswald, S.; Bischoff , L.
  • Journal of The Electrochemical Society, Vol. 152, Issue 11, p. G875-G879
  • DOI: 10.1149/1.2051955

Writing FIB implantation and subsequent anisotropic wet chemical etching for fabrication of 3D structures in silicon
journal, June 1997


The fabrication of silicon nanostructures by focused-ion-beam implantation and TMAH wet etching
journal, March 2010


Low‐temperature reactive ion etching and microwave plasma etching of silicon
journal, February 1988

  • Tachi, Shinichi; Tsujimoto, Kazunori; Okudaira, Sadayuki
  • Applied Physics Letters, Vol. 52, Issue 8, p. 616-618
  • DOI: 10.1063/1.99382

Superconducting transition in Nb nanowires fabricated using focused ion beam
journal, October 2009


Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators
journal, June 2007

  • Tholén, Erik A.; Ergül, Adem; Doherty, Evelyn M.
  • Applied Physics Letters, Vol. 90, Issue 25, Article No. 253509
  • DOI: 10.1063/1.2750520

Deep sub-micron stud-via technology of superconductor VLSI circuits
journal, January 2014

  • Tolpygo, Sergey K.; Bolkhovsky, V.; Weir, T.
  • Superconductor Science and Technology, Vol. 27, Issue 2, Article No. 025016
  • DOI: 10.1088/0953-2048/27/2/025016

Recent developments in micromilling using focused ion beam technology
journal, January 2004


Direct write patterning of titanium films using focused ion beam implantation and plasma etching
journal, February 1997