Global to push GA events into
skip to main content

Title: Temporal compressive sensing systems

Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.
Inventors:
Issue Date:
OSTI Identifier:
1413223
Assignee:
INTEGRATED DYNAMIC ELECTRON SOLUTIONS, INC. (Pleasanton, CA) CHO
Patent Number(s):
9,841,592
Application Number:
15/243,235
Contract Number:
SC0013104
Resource Relation:
Patent File Date: 2016 Aug 22
Research Org:
Integrated Dynamic Electron Solutions, Inc., Pleasanton, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Other works cited in this record:

Method and apparatus for distributed compressed sensing
patent, March 2009

Method and apparatus for compressed sensing
patent, January 2010

Compressive sensor array system and method
patent, November 2010

Method and apparatus for compressive imaging device
patent, June 2012

Method and apparatus for spatio-temporal compressive sensing
patent, June 2013

System and method for processing data signals
patent, October 2013

Method and apparatus for on-line compressed sensing
patent, April 2014

System and method for compressive scanning electron microscopy
patent, January 2015

High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing
patent, October 2015

Decreasing Image Acquisition Time for Compressive Imaging Devices
patent-application, February 2012

Apparatus And Method For Compressive Imaging And Sensing Through Multiplexed Modulation
patent-application, December 2012

Number Of Pixels In Detector Arrays Using Compressive Sensing
patent-application, March 2013

Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
journal, January 2006
  • Candes, Emmanuel J.; Tao, Terence
  • IEEE Transactions on Information Theory, Vol. 52, Issue 12, p. 5406-5425
  • DOI: 10.1109/TIT.2006.885507

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
journal, February 2006
  • Candes, E.J.; Romberg, J.; Tao, T.
  • IEEE Transactions on Information Theory, Vol. 52, Issue 2, p. 489-509
  • DOI: 10.1109/TIT.2005.862083

Stable signal recovery from incomplete and inaccurate measurements
journal, January 2006
  • Candès, Emmanuel J.; Romberg, Justin K.; Tao, Terence
  • Communications on Pure and Applied Mathematics, Vol. 59, Issue 8, p. 1207-1223
  • DOI: 10.1002/cpa.20124

For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution
journal, January 2006
  • Donoho, David L.
  • Communications on Pure and Applied Mathematics, Vol. 59, Issue 6, p. 797-829
  • DOI: 10.1002/cpa.20132

Kronecker Compressive Sensing
journal, February 2012
  • Duarte, M. F.; Baraniuk, R. G.
  • IEEE Transactions on Image Processing, Vol. 21, Issue 2, p. 494-504
  • DOI: 10.1109/TIP.2011.2165289

Compressive Structured Light for Recovering Inhomogeneous Participating Media
conference, January 2008

Bayesian Nonparametric Dictionary Learning for Compressed Sensing MRI
journal, December 2014
  • Huang, Yue; Paisley, John; Lin, Qin
  • IEEE Transactions on Image Processing, Vol. 23, Issue 12, p. 5007-5019
  • DOI: 10.1109/TIP.2014.2360122

Bayesian Compressive Sensing
journal, June 2008
  • Ji, Shihao; Xue, Ya; Carin, Lawrence
  • IEEE Transactions on Signal Processing, Vol. 56, Issue 6, p. 2346-2356
  • DOI: 10.1109/TSP.2007.914345

Dictionary Learning Algorithms for Sparse Representation
journal, February 2003
  • Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.
  • Neural Computation, Vol. 15, Issue 2, p. 349-396
  • DOI: 10.1162/089976603762552951

Coded aperture compressive temporal imaging
journal, January 2013
  • Llull, Patrick; Liao, Xuejun; Yuan, Xin
  • Optics Express, Vol. 21, Issue 9, p. 10526-10545
  • DOI: 10.1364/OE.21.010526

Compressed sensing with off-axis frequency-shifting holography
journal, January 2010
  • Marim, Marcio M.; Atlan, Michael; Angelini, Elsa
  • Optics Letters, Vol. 35, Issue 6, p. 871-873
  • DOI: 10.1364/OL.35.000871

Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution
journal, April 2015

RELION: Implementation of a Bayesian approach to cryo-EM structure determination
journal, December 2012

Compressive video sensors using multichannel imagers
journal, January 2010
  • Shankar, Mohan; Pitsianis, Nikos P.; Brady, David J.
  • Applied Optics, Vol. 49, Issue 10, p. B9-B17
  • DOI: 10.1364/AO.49.0000B9

Single disperser design for coded aperture snapshot spectral imaging
journal, January 2008
  • Wagadarikar, Ashwin; John, Renu; Willett, Rebecca
  • Applied Optics, Vol. 47, Issue 10, p. B44-B51
  • DOI: 10.1364/AO.47.000B44

Video rate spectral imaging using a coded aperture snapshot spectral imager
journal, January 2009
  • Wagadarikar, Ashwin A.; Pitsianis, Nikos P.; Sun, Xiaobai
  • Optics Express, Vol. 17, Issue 8, p. 6368-6388
  • DOI: 10.1364/OE.17.006368

Compressed sensing for practical optical imaging systems: a tutorial
journal, July 2011
  • Marcia, Roummel F.
  • Optical Engineering, Vol. 50, Issue 7, Article No. 072601
  • DOI: 10.1117/1.3596602

Video Compressive Sensing Using Gaussian Mixture Models
journal, November 2014
  • Yang, Jianbo; Yuan, Xin; Liao, Xuejun
  • IEEE Transactions on Image Processing, Vol. 23, Issue 11, p. 4863-4878
  • DOI: 10.1109/TIP.2014.2344294

Similar records in DOepatents and OSTI.GOV collections: