skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Temporal compressive sensing systems

Abstract

Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

Inventors:
Issue Date:
Research Org.:
Integrated Dynamic Electron Solutions, Inc., Pleasanton, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1413223
Patent Number(s):
9,841,592
Application Number:
15/243,235
Assignee:
INTEGRATED DYNAMIC ELECTRON SOLUTIONS, INC. (Pleasanton, CA)
DOE Contract Number:  
SC0013104
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Aug 22
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Citation Formats

Reed, Bryan W. Temporal compressive sensing systems. United States: N. p., 2017. Web.
Reed, Bryan W. Temporal compressive sensing systems. United States.
Reed, Bryan W. Tue . "Temporal compressive sensing systems". United States. https://www.osti.gov/servlets/purl/1413223.
@article{osti_1413223,
title = {Temporal compressive sensing systems},
author = {Reed, Bryan W.},
abstractNote = {Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2017},
month = {12}
}

Patent:

Save / Share:

Works referenced in this record:

Streaming Compressive Sensing for high-speed periodic videos
conference, December 2010

  • Asif, M. Salman; Reddy, Dikpal; Boufounos, Petros T.
  • 2010 IEEE International Conference on Image Processing, p. 3373-3376
  • DOI: 10.1109/ICIP.2010.5652725

Compressive Sensing [Lecture Notes]
journal, August 2007


From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
journal, February 2009

  • Bruckstein, Alfred M.; Donoho, David L.; Elad, Michael
  • SIAM Review, Vol. 51, Issue 1, p. 34-81
  • DOI: 10.1137/060657704

Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
journal, January 2006

  • Candes, Emmanuel J.; Tao, Terence
  • IEEE Transactions on Information Theory, Vol. 52, Issue 12, p. 5406-5425
  • DOI: 10.1109/TIT.2006.885507

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
journal, February 2006

  • Candes, E.J.; Romberg, J.; Tao, T.
  • IEEE Transactions on Information Theory, Vol. 52, Issue 2, p. 489-509
  • DOI: 10.1109/TIT.2005.862083

Sparsity and incoherence in compressive sampling
journal, April 2007


Stable signal recovery from incomplete and inaccurate measurements
journal, January 2006

  • Candès, Emmanuel J.; Romberg, Justin K.; Tao, Terence
  • Communications on Pure and Applied Mathematics, Vol. 59, Issue 8, p. 1207-1223
  • DOI: 10.1002/cpa.20124

Compressed Sensing Vs. Active Learning
conference, July 2006

  • Castro, Rui; Haupt, J.; Nowak, R.
  • 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Vol. 3
  • DOI: 10.1109/ICASSP.2006.1660780

Adaptive compressed sensing- A new class of self-organizing coding models for neuroscience
conference, June 2010

  • Coulter, William K.; Hillar, Christopher J.; Isley, Guy
  • 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, p. 5494-5497
  • DOI: 10.1109/ICASSP.2010.5495209

For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution
journal, January 2006

  • Donoho, David L.
  • Communications on Pure and Applied Mathematics, Vol. 59, Issue 6, p. 797-829
  • DOI: 10.1002/cpa.20132

Kronecker Compressive Sensing
journal, February 2012

  • Duarte, M. F.; Baraniuk, R. G.
  • IEEE Transactions on Image Processing, Vol. 21, Issue 2, p. 494-504
  • DOI: 10.1109/TIP.2011.2165289

Single-pixel imaging via compressive sampling
journal, March 2008

  • Duarte, Marco F.; Davenport, Mark A.; Takhar, Dharmpal
  • IEEE Signal Processing Magazine, Vol. 25, Issue 2, p. 83-91
  • DOI: 10.1109/MSP.2007.914730

Compressed Sensing Image Reconstruction Via Recursive Spatially Adaptive Filtering
conference, November 2007

  • Egiazarian, Karen; Foi, Alessandro; Katkovnik, Vladimir
  • 2007 IEEE International Conference on Image Processing, Vol. 1, p. 549-552
  • DOI: 10.1109/ICIP.2007.4379013

Compressive Structured Light for Recovering Inhomogeneous Participating Media
conference, January 2008


Sparse poisson intensity reconstruction algorithms
conference, October 2009

  • Harmany, Zachary T.; Marcia, Roummel F.; Willett, Rebecca M.
  • 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, p. 634-637
  • DOI: 10.1109/SSP.2009.5278495

A User's Guide to Compressed Sensing for Communications Systems
journal, March 2013

  • Hayashi, Kazunori; Nagahara, Masaaki; Tanaka, Toshiyuki
  • IEICE Transactions on Communications, Vol. E96.B, Issue 3, p. 685-712
  • DOI: 10.1587/transcom.E96.B.685

Bayesian Nonparametric Dictionary Learning for Compressed Sensing MRI
journal, December 2014

  • Huang, Yue; Paisley, John; Lin, Qin
  • IEEE Transactions on Image Processing, Vol. 23, Issue 12, p. 5007-5019
  • DOI: 10.1109/TIP.2014.2360122

Bayesian Compressive Sensing
journal, June 2008

  • Ji, Shihao; Xue, Ya; Carin, Lawrence
  • IEEE Transactions on Signal Processing, Vol. 56, Issue 6, p. 2346-2356
  • DOI: 10.1109/TSP.2007.914345

Dictionary Learning Algorithms for Sparse Representation
journal, February 2003

  • Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.
  • Neural Computation, Vol. 15, Issue 2, p. 349-396
  • DOI: 10.1162/089976603762552951

Coded aperture compressive temporal imaging
journal, January 2013

  • Llull, Patrick; Liao, Xuejun; Yuan, Xin
  • Optics Express, Vol. 21, Issue 9, p. 10526-10545
  • DOI: 10.1364/OE.21.010526

Compressed sensing with off-axis frequency-shifting holography
journal, January 2010

  • Marim, Marcio M.; Atlan, Michael; Angelini, Elsa
  • Optics Letters, Vol. 35, Issue 6, p. 871-873
  • DOI: 10.1364/OL.35.000871

Nonparametric factor analysis with beta process priors
conference, January 2009

  • Paisley, John; Carin, Lawrence
  • ICML '09 Proceedings of the 26th Annual International Conference on Machine Learning, p. 777-784
  • DOI: 10.1145/1553374.1553474

Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution
journal, April 2015


Total Variation Processing of Images with Poisson Statistics
book, January 2009

  • Sawatzky, Alex; Brune, Christoph; Müller, Jahn
  • Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, Vol. 5702, p. 533-540
  • DOI: 10.1007/978-3-642-03767-2_65

RELION: Implementation of a Bayesian approach to cryo-EM structure determination
journal, December 2012


Compressive video sensors using multichannel imagers
journal, January 2010

  • Shankar, Mohan; Pitsianis, Nikos P.; Brady, David J.
  • Applied Optics, Vol. 49, Issue 10, p. B9-B17
  • DOI: 10.1364/AO.49.0000B9

Learning sparse representations for adaptive compressive sensing
conference, August 2012

  • Soni, Akshay; Haupt, Jarvis
  • 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p. 2097-2100
  • DOI: 10.1109/ICASSP.2012.6288324

Applying compressive sensing to TEM video: a substantial frame rate increase on any camera
journal, August 2015

  • Stevens, Andrew; Kovarik, Libor; Abellan, Patricia
  • Advanced Structural and Chemical Imaging, Vol. 1, Issue 10
  • DOI: 10.1186/s40679-015-0009-3

A new compressive imaging camera architecture using optical-domain compression
conference, February 2006

  • Takhar, Dharmpal; Laska, Jason N.; Wakin, Michael B.
  • Proceedings Volume 6065, Computational Imaging IV (2006) , Vol. 6065, Article No: 606509
  • DOI: 10.1117/12.659602

Coded Aperture Compressive Spectral-Temporal Imaging
conference, June 2015

  • Tsai, Tsung-Han; Llull, Patrick; Yuan, Xin
  • Imaging and Applied Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), Article No: CTh2E.5.
  • DOI: 10.1364/COSI.2015.CTh2E.5

Single disperser design for coded aperture snapshot spectral imaging
journal, January 2008

  • Wagadarikar, Ashwin; John, Renu; Willett, Rebecca
  • Applied Optics, Vol. 47, Issue 10, p. B44-B51
  • DOI: 10.1364/AO.47.000B44

Video rate spectral imaging using a coded aperture snapshot spectral imager
journal, January 2009

  • Wagadarikar, Ashwin A.; Pitsianis, Nikos P.; Sun, Xiaobai
  • Optics Express, Vol. 17, Issue 8, p. 6368-6388
  • DOI: 10.1364/OE.17.006368

Compressed sensing for practical optical imaging systems: a tutorial
journal, July 2011

  • Marcia, Roummel F.
  • Optical Engineering, Vol. 50, Issue 7, Article No. 072601
  • DOI: 10.1117/1.3596602

Performance bounds on compressed sensing with Poisson noise
conference, August 2009

  • Willett, Rebecca M.; Raginsky, Maxim
  • 2009 IEEE International Symposium on Information Theory, p. 174-178
  • DOI: 10.1109/ISIT.2009.5205258

A Review of Fast L(1)-Minimization Algorithms for Robust Face Recognition
report, July 2010


Video Compressive Sensing Using Gaussian Mixture Models
journal, November 2014

  • Yang, Jianbo; Yuan, Xin; Liao, Xuejun
  • IEEE Transactions on Image Processing, Vol. 23, Issue 11, p. 4863-4878
  • DOI: 10.1109/TIP.2014.2344294

Compressive confocal microscopy
conference, May 2009

  • Ye, P.; Paredes, J. L.; Arce, G. R.
  • 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, p. 429-432
  • DOI: 10.1109/ICASSP.2009.4959612

Adaptive temporal compressive sensing for video
conference, February 2013

  • Yuan, Xin; Yang, Jianbo; Llull, Patrick
  • 2013 IEEE International Conference on Image Processing, p. 14-18
  • DOI: 10.1109/ICIP.2013.6738004

Low-Cost Compressive Sensing for Color Video and Depth
conference, September 2014

  • Yuan, Xin; Llull, Patrick; Liao, Xuejun
  • 2014 IEEE Conference on Computer Vision and Pattern Recognition, p. 3318-3325
  • DOI: 10.1109/CVPR.2014.424

Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images
journal, January 2012

  • Zhou, Mingyuan; Chen, Haojun; Paisley, John
  • IEEE Transactions on Image Processing, Vol. 21, Issue 1, p. 130-144
  • DOI: 10.1109/TIP.2011.2160072