Global to push GA events into
skip to main content

Title: Battery designs with high capacity anode materials and cathode materials

Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
Inventors:
; ; ; ; ;
Issue Date:
OSTI Identifier:
1397239
Assignee:
Zenlabs Energy, Inc. ARPA-E
Patent Number(s):
9,780,358
Application Number:
13/777,722
Contract Number:
AR0000034
Resource Relation:
Patent File Date: 2013 Feb 26
Research Org:
Zenlabs Energy, Inc. Newark, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE

Works referenced in this record:

Electrolyte
patent, September 2004

Lithium-ion secondary battery
patent-application, December 2009

Lithium Doped Cathode Material
patent-application, March 2011

Nano Si Cluster- SiOx‐C Composite Material as High-Capacity Anode Material for Rechargeable Lithium Batteries
journal, January 2006
  • Morita, Tomokazu; Takami, Norio
  • Journal of The Electrochemical Society, Vol. 153, Issue 2, p. A425-A430
  • DOI: 10.1149/1.2142295

Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries
journal, February 2008
  • Hu, Yong-Sheng; Demir-Cakan, Rezan; Titirici, Maria-Magdalena
  • Angewandte Chemie International Edition, Vol. 47, Issue 9, p. 1645-1649
  • DOI: 10.1002/anie.200704287

Electrochemical Behavior of Nonflammable Organo-Fluorine Compounds for Lithium Ion Batteries
journal, January 2009
  • Achiha, Takashi; Nakajima, Tsuyoshi; Ohzawa, Yoshimi
  • Journal of The Electrochemical Society, Vol. 156, Issue 6, p. A483-A488
  • DOI: 10.1149/1.3111904

High-performance lithium battery anodes using silicon nanowires
journal, December 2007
  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

High Capacity, Temperature-Stable Lithium Aluminum Manganese Oxide Cathodes for Rechargeable Batteries
journal, January 1999
  • Chiang, Yet-Ming; Sadoway, Donald R.; Jang, Young‐Il
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 3, p. 107-110
  • DOI: 10.1149/1.1390750

Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries
journal, September 2009
  • Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei
  • Nano Letters, Vol. 9, Issue 9, p. 3370-3374
  • DOI: 10.1021/nl901670t

Li-Ion Battery Performance with FSI-Based Ionic Liquid Electrolyte and Fluorinated Solvent-Based Electrolyte
journal, January 2011

Improvement of High-Voltage Cycling Behavior of Surface-Modified Li[Ni[sub 1∕3]Co[sub 1∕3]Mn[sub 1∕3]]O[sub 2] Cathodes by Fluorine Substitution for Li-Ion Batteries
journal, July 2005
  • Kim, G.-H.; Kim, J.-H.; Myung, S.-T.
  • Journal of The Electrochemical Society, Vol. 152, Issue 9, p. A1707-A1713
  • DOI: 10.1149/1.1952747

Electrochemical Properties and Chemical Structures of Metal-Doped SiO Anodes for Li-Ion Rechargeable Batteries
journal, January 2007
  • Miyachi, Mariko; Yamamoto, Hironori; Kawai, Hidemasa
  • Journal of The Electrochemical Society, Vol. 154, Issue 4, p. A376-A380
  • DOI: 10.1149/1.2455963

Nonflammable Hydrofluoroether for Lithium-Ion Batteries: Enhanced Rate Capability, Cyclability, and Low-Temperature Performance
journal, January 2009
  • Naoi, Katsuhiko; Iwama, Etsuro; Ogihara, Nobuhiro
  • Journal of The Electrochemical Society, Vol. 156, Issue 4, p. A272-A276
  • DOI: 10.1149/1.3073552

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes
journal, June 2009
  • Ruffo, Riccardo; Hong, Seung Sae; Chan, Candace K.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 26, p. 11390-11398
  • DOI: 10.1021/jp901594g

AlF3-Coating to Improve High Voltage Cycling Performance of Li[Ni1∕3]Co1∕3]Mn1∕3]O2 Cathode Materials for Lithium Secondary Batteries
journal, January 2007
  • Sun, Y.-K.; Cho, S.-W.; Lee, S.-W.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3, p. A168-A172
  • DOI: 10.1149/1.2422890

Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007
  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/B702425H

Lithium Insertion in Carbon-Silicon Composite Materials Produced by Mechanical Milling
journal, January 1998
  • Wang, C. S.; Wu, G. T.; Zhang, X. B.
  • Journal of The Electrochemical Society, Vol. 145, Issue 8, p. 2751-2758
  • DOI: 10.1149/1.1838709

Significant Improvement of Electrochemical Performance of AlF3-Coated Li[Ni0.8Co0.1Mn0.1]O2 Cathode Materials
journal, January 2007
  • Woo, S.-U.; Yoon, C. S.; Amine, K.
  • Journal of The Electrochemical Society, Vol. 154, Issue 11, p. A1005-A1009
  • DOI: 10.1149/1.2776160

High Capacity, Surface-Modified Layered Li [Li (1−x)3Mn (2−x)3Nix3Cox ∕ 3 ] O2 Cathodes with Low Irreversible Capacity Loss
journal, March 2006
  • Wu, Y.; Manthiram, A.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 5, p. A221-A224
  • DOI: 10.1149/1.2180528