Global to push GA events into
skip to main content

Title: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.
Inventors:
; ; ;
Issue Date:
OSTI Identifier:
1361423
Assignee:
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA LBNL
Patent Number(s):
9,673,452
Application Number:
14/347,600
Contract Number:
AC02-05CH11231
Resource Relation:
Patent File Date: 2012 Sep 28
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Works referenced in this record:

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability
journal, July 2011
  • Wang, Hailiang; Yang, Yuan; Liang, Yongye
  • Nano Letters, Vol. 11, Issue 7, p. 2644-2647
  • DOI: 10.1021/nl200658a

Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells
journal, November 2011
  • Ji, Liwen; Rao, Mumin; Zheng, Haimei
  • Journal of the American Chemical Society, Vol. 133, Issue 46, p. 18522-18525
  • DOI: 10.1021/ja206955k