Global to push GA events into
skip to main content

Title: Method for discovering relationships in data by dynamic quantum clustering

Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.
Inventors:
;
Issue Date:
OSTI Identifier:
1356210
Assignee:
The Board of Trustees of the Leland Stanford Junior University SLAC
Patent Number(s):
9,646,074
Application Number:
14/482,961
Contract Number:
AC02-76SF00515
Resource Relation:
Patent File Date: 2014 Sep 10
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Other works cited in this record:

Method and apparatus for clustering data
patent, February 2000

Image segmentation using statistical clustering with saddle point detection
patent, August 2007

Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
patent, September 2013

Method and apparatus for quantum clustering
patent-application, June 2004

Methods of adiabatic quantum computation
patent-application, August 2007

Identifying Related Objects Using Quantum Clustering
patent-application, March 2008

System and method for simulating the time-dependent behaviour of atomic and/or molecular systems subject to static or dynamic fields
patent-application, June 2008

Methodology And Its Computational Implementation For Quantitative First-Principles Quantum-Mechanical Predictions Of The Structures And Properties Of Matter
patent-application, December 2011

Identifying information related to a particular entity from electronic sources, using dimensional reduction and quantum clustering
patent-application, December 2012

Systems and methods for determining optimal parameters for dynamic quantum clustering analyses
patent-application, February 2015

High-performance dynamic quantum clustering on graphics processors
journal, January 2013

Quantum Clustering Algorithm based on Exponent Measuring Distance
conference, December 2008
  • Yao, Zhang; Peng, Wang; Gao-yun, Chen
  • Knowledge Acquisition and Modeling Workshop, 2008. KAM Workshop 2008. IEEE International Symposium on
  • DOI: 10.1109/KAMW.2008.4810518

Solving Schrödinger’s equation around a desired energy: Application to silicon quantum dots
journal, February 1994
  • Wang, Lin‐Wang; Zunger, Alex
  • The Journal of Chemical Physics, Vol. 100, Issue 3, p. 2394-2397
  • DOI: 10.1063/1.466486

Quantum clustering algorithms
conference, June 2007
  • Aïmeur, Esma; Brassard, Gilles; Gambs, Sébastien
  • Proceedings of the 24th international conference on Machine learning
  • DOI: 10.1145/1273496.1273497

Singular value decomposition for genome-wide expression data processing and modeling
journal, August 2000
  • Alter, O.; Brown, P. O.; Botstein, D.
  • Proceedings of the National Academy of Sciences, Vol. 97, Issue 18, p. 10101-10106
  • DOI: 10.1073/pnas.97.18.10101

Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods
journal, May 2005
  • Coifman, R. R.; Lafon, S.; Lee, A. B.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 21, p. 7432-7437
  • DOI: 10.1073/pnas.0500896102

Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring
journal, October 1999

Clustering Within Quantum Mechanical Framework
book, January 2005
  • Demir, Güleser K.; Hutchison, David; Kanade, Takeo
  • Pattern Recognition and Machine Intelligence
  • DOI: 10.1007/11590316_23

Algorithm for Data Clustering in Pattern Recognition Problems Based on Quantum Mechanics
journal, December 2001

Data clustering: a review
journal, September 1999
  • Jain, A. K.; Murty, M. N.; Flynn, P. J.
  • ACM Computing Surveys, Vol. 31, Issue 3, p. 264-323
  • DOI: 10.1145/331499.331504

Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization
journal, September 2006
  • Lafon, S.; Lee, A. B.
  • IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, Issue 9, p. 1393-1403
  • DOI: 10.1109/TPAMI.2006.184

Diffusion maps, spectral clustering and reaction coordinates of dynamical systems
journal, July 2006
  • Nadler, Boaz; Lafon, Stéphane; Coifman, Ronald R.
  • Applied and Computational Harmonic Analysis, Vol. 21, Issue 1, p. 113-127
  • DOI: 10.1016/j.acha.2005.07.004

A privacy-preserving clustering approach toward secure and effective data analysis for business collaboration
journal, February 2007

Parametric and non-parametric unsupervised cluster analysis
journal, February 1997

Entanglement Partitioning of Quantum Particles for Data Clustering
conference, September 2006
  • Shuai, Dianxun; Lu, Cunpai; Zhang, Bin
  • Computer Software and Applications Conference, 2006. COMPSAC '06. 30th Annual International
  • DOI: 10.1109/COMPSAC.2006.131

Self-Organizing Data Clustering Based on Quantum Entanglement Model
conference, June 2006
  • Shuai, Dianxun; Liu, Yuzhe; Shuai, Qing
  • Computer and Computational Sciences, 2006. IMSCCS '06. First International Multi-Symposiums on
  • DOI: 10.1109/IMSCCS.2006.266

COMPACT: A Comparative Package for Clustering Assessment
book, January 2005
  • Varshavsky, Roy; Linial, Michal; Horn, David
  • Parallel and Distributed Processing and Applications - ISPA 2005 Workshops
  • DOI: 10.1007/11576259_18

Novel Unsupervised Feature Filtering of Biological Data
journal, July 2006

Learning from text: Matching readers and texts by latent semantic analysis
journal, January 1998
  • Wolfe, Michael B.W.; Schreiner, M.E.; Rehder, Bob
  • Discourse Processes, Vol. 25, Issue 2-3, p. 309-336
  • DOI: 10.1080/01638539809545030

Similar records in DOepatents and OSTI.GOV collections: