Amorphous titania/carbon composite electrode materials
Abstract
An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.
- Inventors:
- Issue Date:
- Research Org.:
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1356194
- Patent Number(s):
- 9647266
- Application Number:
- 14/523,431
- Assignee:
- UCHICAGO ARGONNE, LLC
- Patent Classifications (CPCs):
-
H - ELECTRICITY H01 - BASIC ELECTRIC ELEMENTS H01M - PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
Y - NEW / CROSS SECTIONAL TECHNOLOGIES Y02 - TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE Y02E - REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- DOE Contract Number:
- AC02-06CH11357
- Resource Type:
- Patent
- Resource Relation:
- Patent File Date: 2014 Oct 24
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 36 MATERIALS SCIENCE
Citation Formats
Vaughey, John T., Jansen, Andrew, and Joyce, Christopher D. Amorphous titania/carbon composite electrode materials. United States: N. p., 2017.
Web.
Vaughey, John T., Jansen, Andrew, & Joyce, Christopher D. Amorphous titania/carbon composite electrode materials. United States.
Vaughey, John T., Jansen, Andrew, and Joyce, Christopher D. Tue .
"Amorphous titania/carbon composite electrode materials". United States. https://www.osti.gov/servlets/purl/1356194.
@article{osti_1356194,
title = {Amorphous titania/carbon composite electrode materials},
author = {Vaughey, John T. and Jansen, Andrew and Joyce, Christopher D.},
abstractNote = {An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2017},
month = {5}
}
Works referenced in this record:
Crystallite Size Constraints on Lithium Insertion into Brookite TiO2
journal, May 2008
- Anji Reddy, M.; Pralong, V.; Varadaraju, U. V.
- Electrochemical and Solid-State Letters, Vol. 11, Issue 8, p. A132-A134
Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties
journal, December 2005
- Sorensen, Erin M.; Barry, Scott J.; Jung, Ha-Kyun
- Chemistry of Materials, Vol. 18, Issue 2, p. 482-489
Studies of Mg-Substituted Li4−xMgxTi5O12 Spinel Electrodes (0≤x≤1) for Lithium Batteries
journal, January 2001
- Chen, C. H.; Vaughey, J. T.; Jansen, A. N.
- Journal of The Electrochemical Society, Vol. 148, Issue 1, p. A102-A104
Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005
- Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
- Nature Materials, Vol. 4, Issue 5, p. 366-377
Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997
- Padhi, A. K.
- Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
High Lithium Electroactivity of Nanometer-Sized Rutile TiO2
journal, June 2006
- Hu, Y.-S.; Kienle, L.; Guo, Y.-G.
- Advanced Materials, Vol. 18, Issue 11, p. 1421-1426
Electrochemical lithium reactivity with nanotextured anatase-type TiO2
journal, January 2005
- Sudant, Guillaume; Baudrin, Emmanuel; Larcher, Dominique
- Journal of Materials Chemistry, Vol. 15, Issue 12, p. 1263-1269
Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4
journal, July 2003
- Doeff, Marca M.; Hu, Yaoqin; McLarnon, Frank
- Electrochemical and Solid-State Letters, Vol. 6, Issue 10, p. A207-A209
New cathode materials for silver-based primary batteries: AgCuO2 and Ag2Cu2O3
journal, October 2004
- May, Crystal D.; Vaughey, J.T.
- Electrochemistry Communications, Vol. 6, Issue 10, p. 1075-1079
Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008
- Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
- Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
Lithium Insertion into Vanadium Oxide Nanotubes: Electrochemical and Structural Aspects
journal, December 2005
- Nordlinder, Sara; Nyholm, Leif; Gustafsson, Torbjörn
- Chemistry of Materials, Vol. 18, Issue 2, p. 495-503
Anatase-TiO2 Nanomaterials: Analysis of Key Parameters Controlling Crystallization
journal, November 2007
- Fernández-García, Marcos; Belver, Carolina; Hanson, Jonathan C.
- Journal of the American Chemical Society, Vol. 129, Issue 44, p. 13604-13612
Large-Scale Fabrication of TiO2 Hierarchical Hollow Spheres
journal, May 2006
- Li, Xiaoxu; Xiong, Yujie; Li, Zhengquan
- Inorganic Chemistry, Vol. 45, Issue 9, p. 3493-3495
Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles
journal, October 2007
- Wang, John; Polleux, Julien; Lim, James
- The Journal of Physical Chemistry C, Vol. 111, Issue 40, p. 14925-14931
Electrochemical Properties of Nanostructured Amorphous, Sol-gel-Synthesized TiO2/Acetylene Black Composite Electrodes
journal, February 2004
- Furukawa, Hiroyasu; Hibino, Mitsuhiro; Honma, Itaru
- Journal of The Electrochemical Society, Vol. 151, Issue 4, p. A527-A531
Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations
journal, June 2005
- Di Valentin, Cristiana; Pacchioni, Gianfranco; Selloni, Annabella
- The Journal of Physical Chemistry B, Vol. 109, Issue 23, p. 11414-11419
Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode
journal, March 2007
- Jiang, Chunhai; Wei, Mingdeng; Qi, Zhimei
- Journal of Power Sources, Vol. 166, Issue 1, p. 239-243
Lithium insertion into hollandite-type TiO2
journal, September 1999
- Noailles, Liam D.; Johnson, Christopher S.; Vaughey, John T.
- Journal of Power Sources, Vol. 81-82, p. 259-263
Lithium Intercalation into Nanocrystalline Brookite TiO2
journal, December 2006
- Reddy, M. Anji; Kishore, M. Satya; Pralong, V.
- Electrochemical and Solid-State Letters, Vol. 10, Issue 2, p. A29-A31
Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2
journal, August 2006
- Reddy, M. Anji; Kishore, M. Satya; Pralong, V.
- Electrochemistry Communications, Vol. 8, Issue 8, p. 1299-1303
Visible light-sensitive yellow TiO2−xNx and Fe–N co-doped Ti1−yFeyO2−xNx anatase photocatalysts
journal, October 2006
- Rane, K. S.; Mhalsiker, R.; Yin, S.
- Journal of Solid State Chemistry, Vol. 179, Issue 10, p. 3033-3044
Crystal structure of cesium-bis(oxalato)oxo-titanate(IV) hydrate
journal, March 1992
- Fester, A.; Bensch, W.; Trömel, M.
- Inorganica Chimica Acta, Vol. 193, Issue 1, p. 99-103
Phase Composition of Nanocrystalline Titania Synthesized under Hydrothermal Conditions from Different Titanyl Compounds
journal, August 2004
- Kolen'ko, Yu. V.; Burukhin, A. A.; Churagulov, B. R.
- Inorganic Materials, Vol. 40, Issue 8, p. 822-828
Dipotassium bis(oxalato)oxotitanate(IV) dihydrate
journal, June 1994
- Fester, A.; Bensch, W.; Trömel, M.
- Acta Crystallographica Section C: Structural Chemistry, Vol. 50, Issue 6, p. 850-852
Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries
journal, July 2005
- Yao, X. L.; Xie, S.; Chen, C. H.
- Electrochimica Acta, Vol. 50, Issue 20, p. 4076-4081
Lithium Ion Intercalation Performance of Porous Laminal Titanium Dioxides Synthesized by Sol−Gel Process
journal, February 2009
- Tsai, Min-Chiao; Chang, Jian-Chia; Sheu, Hwo-Shuenn
- Chemistry of Materials, Vol. 21, Issue 3, p. 499-505
A High-Rate, Nanocomposite LiFePO4∕Carbon Cathode
journal, July 2005
- Sides, Charles R.; Croce, Fausto; Young, Vaneica Y.
- Electrochemical and Solid-State Letters, Vol. 8, Issue 9, A484-A487
New hollandite oxides TiO2(H) and K0.06TiO2
journal, July 1989
- Latroche, M.; Brohan, L.; Marchand, R.
- Journal of Solid State Chemistry, Vol. 81, Issue 1, p. 78-82
Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor
journal, April 2010
- Joyce, Christopher D.; McIntyre, Toni; Simmons, Sade
- Journal of Power Sources, Vol. 195, Issue 7, p. 2064-2068