skip to main content
DOE Patents title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Device and method for enhanced collection and assay of chemicals with high surface area ceramic

Abstract

A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.

Inventors:
; ; ; ; ;
Issue Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1344790
Patent Number(s):
9,259,708
Application Number:
13/546,948
Assignee:
BATTELLE MEMORIAL INSTITUTE (Richland, WA)
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Jul 11
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Addleman, Raymond S., Li, Xiaohong Shari, Chouyyok, Wilaiwan, Cinson, Anthony D., Bays, John T., and Wallace, Krys. Device and method for enhanced collection and assay of chemicals with high surface area ceramic. United States: N. p., 2016. Web.
Addleman, Raymond S., Li, Xiaohong Shari, Chouyyok, Wilaiwan, Cinson, Anthony D., Bays, John T., & Wallace, Krys. Device and method for enhanced collection and assay of chemicals with high surface area ceramic. United States.
Addleman, Raymond S., Li, Xiaohong Shari, Chouyyok, Wilaiwan, Cinson, Anthony D., Bays, John T., and Wallace, Krys. Tue . "Device and method for enhanced collection and assay of chemicals with high surface area ceramic". United States. https://www.osti.gov/servlets/purl/1344790.
@article{osti_1344790,
title = {Device and method for enhanced collection and assay of chemicals with high surface area ceramic},
author = {Addleman, Raymond S. and Li, Xiaohong Shari and Chouyyok, Wilaiwan and Cinson, Anthony D. and Bays, John T. and Wallace, Krys},
abstractNote = {A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {2}
}

Patent:

Save / Share:

Works referenced in this record:

Ordered mesoporous silica coated capillary for in-tube solid phase microextraction coupled to high performance liquid chromatography
journal, July 2005


Amino ethyl-functionalized nanoporous silica as a novel fiber coating for solid-phase microextraction
journal, July 2009

  • Hashemi, Payman; Shamizadeh, Mohammad; Badiei, Alireza
  • Analytica Chimica Acta, Vol. 646, Issue 1-2, p. 1-5
  • DOI: 10.1016/j.aca.2009.04.023

Array capillary in-tube solid-phase microextraction: A rapid preparation technique for water samples
journal, June 2012


Application of solid-phase microextraction in analytical toxicology
journal, May 2007


SPME-HPLC: A new approach to the analysis of explosives
journal, August 2007


Recent Advances in Solid-Phase Microextraction and Related Techniques for Pharmaceutical and Biomedical Analysis
journal, January 2005


Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis
journal, March 2004

  • Vas, György; Vékey, Károly
  • Journal of Mass Spectrometry, Vol. 39, Issue 3
  • DOI: 10.1002/jms.606

Applications of solid-phase microextraction in food analysis
journal, June 2000

  • Kataoka, Hiroyuki; Lord, Heather L.; Pawliszyn, Janusz
  • Journal of Chromatography A, Vol. 880, Issue 1-2, p. 35-62
  • DOI: 10.1016/S0021-9673(00)00309-5

Sorbent- and liquid-phase microextraction techniques and membrane-assisted extraction in combination with gas chromatographic analysis: A review
journal, April 2008

  • Hyötyläinen, Tuulia; Riekkola, Marja-Liisa
  • Analytica Chimica Acta, Vol. 614, Issue 1, p. 27-37
  • DOI: 10.1016/j.aca.2008.03.003

Recent developments in solid-phase microextraction
journal, October 2008

  • Risticevic, Sanja; Niri, Vadoud H.; Vuckovic, Dajana
  • Analytical and Bioanalytical Chemistry, Vol. 393, Issue 3
  • DOI: 10.1007/s00216-008-2375-3

Solid phase microextraction with thermal desorption using fused silica optical fibers
journal, October 1990

  • Arthur, Catherine L.; Pawliszyn, Janusz.
  • Analytical Chemistry, Vol. 62, Issue 19
  • DOI: 10.1021/ac00218a019

A review on development of solid phase microextraction fibers by sol–gel methods and their applications
journal, March 2008


Surface characterization of commercial fibers for solid-phase microextraction and related problems in their application
journal, February 2000

  • Haberhauer-Troyer, C.; Crnoja, M.; Rosenberg, E.
  • Fresenius' Journal of Analytical Chemistry, Vol. 366, Issue 4
  • DOI: 10.1007/s002160050066

New sorbents for extraction and microextraction techniques
journal, April 2010

  • Augusto, Fabio; Carasek, Eduardo; Silva, Raquel Gomes Costa
  • Journal of Chromatography A, Vol. 1217, Issue 16, p. 2533-2542
  • DOI: 10.1016/j.chroma.2009.12.033

Recent developments in solid-phase microextraction coatings and related techniques
journal, January 2006

  • Dietz, Christian; Sanz, Jon; Cámara, Carmen
  • Journal of Chromatography A, Vol. 1103, Issue 2, p. 183-192
  • DOI: 10.1016/j.chroma.2005.11.041

Silicate-entrapped porous coatings for preparing high-efficiency solid-phase microextraction sorbents
journal, June 2010

  • Breton, François; Monton, Maria Rowena N.; Mullett, Wayne M.
  • Analytica Chimica Acta, Vol. 669, Issue 1-2, p. 39-44
  • DOI: 10.1016/j.aca.2010.04.035

Sol−Gel Coating Technology for the Preparation of Solid-Phase Microextraction Fibers of Enhanced Thermal Stability
journal, October 1997

  • Chong, Sau L.; Wang, Dongxin; Hayes, James D.
  • Analytical Chemistry, Vol. 69, Issue 19
  • DOI: 10.1021/ac9703360

Analysis of the volatile chemical markers of explosives using novel solid phase microextraction coupled to ion mobility spectrometry
journal, August 2008

  • Guerra, Patricia; Lai, Hanh; Almirall, José R.
  • Journal of Separation Science, Vol. 31, Issue 15
  • DOI: 10.1002/jssc.200800171

Selective stationary phase for solid-phase microextraction analysis of sarin (GB)
journal, April 2002


Preparation and applications of polypyrrole films in solid-phase microextraction
journal, February 2001


Fibers Coated with Molecularly Imprinted Polymers for Solid-Phase Microextraction
journal, July 2001

  • Koster, Emile H. M.; Crescenzi, Carlo; den Hoedt, Widia
  • Analytical Chemistry, Vol. 73, Issue 13
  • DOI: 10.1021/ac001331x

A new poly(phthalazine ether sulfone ketone)-coated fiber for solid-phase microextraction to determine nitroaromatic explosives in aqueous samples
journal, April 2007


High extraction efficiency for polar aromatic compounds in natural water samples using multiwalled carbon nanotubes/Nafion solid-phase microextraction coating
journal, December 2009

  • Chen, Wenfeng; Zeng, Jingbin; Chen, Jinmei
  • Journal of Chromatography A, Vol. 1216, Issue 52, p. 9143-9148
  • DOI: 10.1016/j.chroma.2009.07.025

Studies of the surface charge of amorphous aluminosilicates using surface complexation models
journal, December 2005

  • Jara, Alejandra A.; Goldberg, Sabine; Mora, M. L.
  • Journal of Colloid and Interface Science, Vol. 292, Issue 1, p. 160-170
  • DOI: 10.1016/j.jcis.2005.05.083

Facile synthesis of ordered magnetic mesoporous γ-Fe2O3/SiO2 nanocomposites with diverse mesostructures
journal, October 2008

  • Wang, Yangang; Ren, Jiawen; Liu, Xiaohui
  • Journal of Colloid and Interface Science, Vol. 326, Issue 1
  • DOI: 10.1016/j.jcis.2008.07.012

Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region
journal, January 1993

  • Scarano, D.; Zecchina, A.; Bordiga, S.
  • Journal of the Chemical Society, Faraday Transactions, Vol. 89, Issue 22
  • DOI: 10.1039/FT9938904123

Preparation of Narrow Size Distribution Superparamagnetic γ-Fe 2 O 3 Nanoparticles in a Sol−Gel Transparent SiO 2 Matrix
journal, June 2002

  • Moreno, E. M.; Zayat, M.; Morales, M. P.
  • Langmuir, Vol. 18, Issue 12
  • DOI: 10.1021/la020037s

Optically transparent magnetic nanocomposites based on encapsulated Fe 3 O 4 nanoparticles in a sol–gel silica network
journal, October 2006