Global to push GA events into
skip to main content

Title: Electrochemical systems configured to harvest heat energy

Electrochemical systems for harvesting heat energy, and associated electrochemical cells and methods, are generally described. The electrochemical cells can be configured, in certain cases, such that at least a portion of the regeneration of the first electrochemically active material is driven by a change in temperature of the electrochemical cell. The electrochemical cells can be configured to include a first electrochemically active material and a second electrochemically active material, and, in some cases, the absolute value of the difference between the first thermogalvanic coefficient of the first electrochemically active material and the second thermogalvanic coefficient of the second electrochemically active material is at least about 0.5 millivolts/Kelvin.
Inventors:
; ; ; ;
Issue Date:
OSTI Identifier:
1341820
Assignee:
Massachusetts Institute of Technology (Cambridge, MA) CHO
Patent Number(s):
9,559,388
Application Number:
14/308,669
Contract Number:
SC0001299; FG02-09ER46577; EE0005806; AC02-76SF00515
Resource Relation:
Patent File Date: 2014 Jun 18
Research Org:
Massachusetts Institute of Technology, Cambridge, MA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION; 36 MATERIALS SCIENCE

Works referenced in this record:

Usefulness of F(dm/dQ) Function for Elucidating the Ions Role in PB Films
journal, January 2007
  • Agrisuelas, J.; Gabrielli, C.; García-Jareño, J. J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 6, p. F134-F140
  • DOI: 10.1149/1.2728038

Insights on the Mechanism of Insoluble-to-Soluble Prussian Blue Transformation
journal, January 2009
  • Agrisuelas, Jeronimo; García-Jareño, Jose Juan; Gimenez-Romero, David
  • Journal of The Electrochemical Society, Vol. 156, Issue 10, p. P149-P156
  • DOI: 10.1149/1.3177258

Thermally and Photochemically Regenerative Electrochemical Systems
book, January 1967

High-performance bulk thermoelectrics with all-scale hierarchical architectures
journal, September 2012
  • Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.
  • Nature, Vol. 489, Issue 7416, p. 414-418
  • DOI: 10.1038/nature11439

Opportunities and challenges for a sustainable energy future
journal, August 2012
  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

The Temperature Coefficients of Electrode Potentials
journal, January 1959
  • deBethune, A. J.; Licht, T. S.; Swendeman, N.
  • Journal of The Electrochemical Society, Vol. 106, Issue 7, p. 616-625
  • DOI: 10.1149/1.2427448

Thermoelectric Cooling and Power Generation
journal, July 1999

Liquid Thermoelectrics: Review of Recent And Limited New Data of Thermogalvanic Cell Experiments
journal, November 2013
  • Gunawan, Andrey; Lin, Chao-Han; Buttry, Daniel A.
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 17, Issue 4, p. 304-323
  • DOI: 10.1080/15567265.2013.776149

Searching for a Better Thermal Battery
journal, March 2012

Thermodynamics and Thermal Efficiencies of Thermally Regenerative Bimetallic and Hydride EMF Cell Systems
book, January 1967

Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes
journal, June 1984
  • Itaya, Kingo; Shoji, Nobuyoshi; Uchida, Isamu
  • Journal of the American Chemical Society, Vol. 106, Issue 12, p. 3423-3429
  • DOI: 10.1021/ja00324a007

High-performance flat-panel solar thermoelectric generators with high thermal concentration
journal, May 2011
  • Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping
  • Nature Materials, Vol. 10, Issue 7, p. 532-538
  • DOI: 10.1038/nmat3013

Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cells
journal, December 1994
  • Kuzminskii, Y. V.; Zasukha, V. A.; Kuzminskaya, G. Y.
  • Journal of Power Sources, Vol. 52, Issue 2, p. 231-242
  • DOI: 10.1016/0378-7753(94)02015-9

Thermoelectric Property Studies on Cu-Doped n-type CuxBi2Te2.7Se0.3 Nanocomposites
journal, June 2011
  • Liu, Wei-Shu; Zhang, Qinyong; Lan, Yucheng
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 577-587
  • DOI: 10.1002/aenm.201100149

Prussian blue: a new framework of electrode materials for sodium batteries
journal, January 2012
  • Lu, Yuhao; Wang, Long; Cheng, Jinguang
  • Chemical Communications, Vol. 48, Issue 52, p. 6544-6546
  • DOI: 10.1039/c2cc31777j

Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide
journal, August 1983
  • Mortimer, Roger J.; Rosseinsky, David R.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 151, Issue 1-2, p. 133-147
  • DOI: 10.1016/S0022-0728(83)80429-X

A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
journal, January 2012
  • Pasta, Mauro; Wessells, Colin D.; Huggins, Robert A.
  • Nature Communications, Vol. 3, Issue 1, Article No. 1149
  • DOI: 10.1038/ncomms2139

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008

A Review of Power Generation in Aqueous Thermogalvanic Cells
journal, January 1995
  • Quickenden, T. I.; Mua, Y.
  • Journal of The Electrochemical Society, Vol. 142, Issue 11, p. 3985-3994
  • DOI: 10.1149/1.2048446

Complex thermoelectric materials
journal, February 2008
  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Electrochemical studies of the factors influencing the cycle stability of Prussian Blue films
journal, April 1992
  • Stilwell, D. E.; Park, K. H.; Miles, M. H.
  • Journal of Applied Electrochemistry, Vol. 22, Issue 4, p. 325-331
  • DOI: 10.1007/BF01092684

Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems
journal, November 2012
  • Wang, Zhong Lin; Wu, Wenzhuo
  • Angewandte Chemie International Edition, Vol. 51, Issue 47, p. 11700-11721
  • DOI: 10.1002/anie.201201656

Copper hexacyanoferrate battery electrodes with long cycle life and high power
journal, November 2011
  • Wessells, Colin D.; Huggins, Robert A.; Cui, Yi
  • Nature Communications, Vol. 2, Article No. 550
  • DOI: 10.1038/ncomms1563

The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes
journal, January 2012
  • Wessells, Colin D.; Peddada, Sandeep V.; McDowell, Matthew T.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. A98-A103
  • DOI: 10.1149/2.060202jes

Self-powered nanowire devices
journal, March 2010
  • Xu, Sheng; Qin, Yong; Xu, Chen
  • Nature Nanotechnology, Vol. 5, Issue 5, p. 366-373
  • DOI: 10.1038/nnano.2010.46

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014
  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

An electrochemical system for efficiently harvesting low-grade heat energy
journal, May 2014
  • Lee, Seok Woo; Yang, Yuan; Lee, Hyun-Wook
  • Nature Communications, Vol. 5, Article No. 3942
  • DOI: 10.1038/ncomms4942

Charging-free electrochemical system for harvesting low-grade thermal energy
journal, November 2014
  • Yang, Yuan; Lee, Seok Woo; Ghasemi, Hadi
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 48, p. 17011-17016
  • DOI: 10.1073/pnas.1415097111