Solid lithium electrolyte via addition of lithium salts to metal-organic frameworks
Abstract
Various embodiments of the invention disclose that the uptake of LiO.sup.iPr in Mg.sub.2(dobdc) (dobdc.sup.4-=1,4-dioxido-2,5-benzenedicarboxylate) followed by soaking in a typical electrolyte solution leads to a new solid lithium electrolyte Mg.sub.2(dobdc).0.35LiO.sup.iPr.0.25LiBF.sub.4.EC.DEC. Two-point ac impedance data show a pressed pellet of this material to have a conductivity of 3.1.times.10.sup.-4 S/cm at 300 K. In addition, the results from variable-temperature measurements reveal an activation energy of approximately 0.15 eV, while single-particle data suggest that intraparticle transport dominates conduction.
- Inventors:
- Issue Date:
- Research Org.:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1336917
- Patent Number(s):
- 9525190
- Application Number:
- 15/083,029
- Assignee:
- The Regents of The University of California (Oakland, CA)
- Patent Classifications (CPCs):
-
H - ELECTRICITY H01 - BASIC ELECTRIC ELEMENTS H01M - PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
Y - NEW / CROSS SECTIONAL TECHNOLOGIES Y02 - TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE Y02E - REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- DOE Contract Number:
- AC02-05CH11231
- Resource Type:
- Patent
- Resource Relation:
- Patent File Date: 2016 Mar 28
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 25 ENERGY STORAGE
Citation Formats
Wiers, Brian M., Balsara, Nitash P., and Long, Jeffrey R. Solid lithium electrolyte via addition of lithium salts to metal-organic frameworks. United States: N. p., 2016.
Web.
Wiers, Brian M., Balsara, Nitash P., & Long, Jeffrey R. Solid lithium electrolyte via addition of lithium salts to metal-organic frameworks. United States.
Wiers, Brian M., Balsara, Nitash P., and Long, Jeffrey R. Tue .
"Solid lithium electrolyte via addition of lithium salts to metal-organic frameworks". United States. https://www.osti.gov/servlets/purl/1336917.
@article{osti_1336917,
title = {Solid lithium electrolyte via addition of lithium salts to metal-organic frameworks},
author = {Wiers, Brian M. and Balsara, Nitash P. and Long, Jeffrey R.},
abstractNote = {Various embodiments of the invention disclose that the uptake of LiO.sup.iPr in Mg.sub.2(dobdc) (dobdc.sup.4-=1,4-dioxido-2,5-benzenedicarboxylate) followed by soaking in a typical electrolyte solution leads to a new solid lithium electrolyte Mg.sub.2(dobdc).0.35LiO.sup.iPr.0.25LiBF.sub.4.EC.DEC. Two-point ac impedance data show a pressed pellet of this material to have a conductivity of 3.1.times.10.sup.-4 S/cm at 300 K. In addition, the results from variable-temperature measurements reveal an activation energy of approximately 0.15 eV, while single-particle data suggest that intraparticle transport dominates conduction.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {12}
}
Works referenced in this record:
Post-Synthesis Alkoxide Formation Within Metal−Organic Framework Materials: A Strategy for Incorporating Highly Coordinatively Unsaturated Metal Ions
journal, March 2009
- Mulfort, Karen L.; Farha, Omar K.; Stern, Charlotte L.
- Journal of the American Chemical Society, Vol. 131, Issue 11, p. 3866-3868
Relationship between Structure and Solubility of Organic Lithium Compounds
journal, October 1965
- Kamienski, Conrad W.; Lewis, Dennis H.
- The Journal of Organic Chemistry, Vol. 30, Issue 10