Global to push GA events into
skip to main content

Title: Piezoresistive boron doped diamond nanowire

A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.
Issue Date:
OSTI Identifier:
Patent Number(s):
Application Number:
Contract Number:
Resource Relation:
Patent File Date: 2015 Jan 21
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
Country of Publication:
United States

Works referenced in this record:

Planar ultrananocrystalline diamond field emitter in accelerator radio frequency electron injector: Performance metrics
journal, November 2014
  • Baryshev, Sergey V.; Antipov, Sergey; Shao, Jiahang
  • Applied Physics Letters, Vol. 105, Issue 20, Article No. 203505
  • DOI: 10.1063/1.4901723

High quantum efficiency ultrananocrystalline diamond photocathode for photoinjector applications
journal, September 2014
  • Pérez Quintero, Kenneth J.; Antipov, Sergey; Sumant, Anirudha V.
  • Applied Physics Letters, Vol. 105, Issue 12, Article No. 123103
  • DOI: 10.1063/1.4896418

Properties of Hydrogen Terminated Diamond as a Photocathode
journal, March 2011

Piezoresistivity in vapor‐deposited diamond films
journal, June 1992
  • Aslam, M.; Taher, I.; Masood, A.
  • Applied Physics Letters, Vol. 60, Issue 23, p. 2923-2925
  • DOI: 10.1063/1.106821

The CVD of Nanodiamond Materials
journal, July 2008
  • Butler, James E.; Sumant, Anirudha V.; Barnard, Amanda S.
  • Chemical Vapor Deposition, Vol. 14, Issue 7-8, p. 145-160
  • DOI: 10.1002/cvde.200700037

Optically Transparent Diamond Electrode for Use in IR Transmission Spectroelectrochemical Measurements
journal, October 2007
  • Dai, Yingrui; Proshlyakov, Denis A.; Zak, Jerzy K.
  • Analytical Chemistry, Vol. 79, Issue 19, p. 7526-7533
  • DOI: 10.1021/ac071161p

Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys
journal, August 1996
  • Fischetti, M. V.; Laux, S. E.
  • Journal of Applied Physics, Vol. 80, Issue 4, p. 2234-2252
  • DOI: 10.1063/1.363052

Direct Low-Temperature Integration of Nanocrystalline Diamond with GaN Substrates for Improved Thermal Management of High-Power Electronics
journal, February 2012
  • Goyal, Vivek; Sumant, Anirudha V.; Teweldebrhan, Desalegne
  • Advanced Functional Materials, Vol. 22, Issue 7, p. 1525-1530
  • DOI: 10.1002/adfm.201102786

Configurational, electronic entropies and the thermoelectric properties of nanocarbon ensembles
journal, April 2008
  • Gruen, Dieter M.; Bruno, Paola; Xie, Ming
  • Applied Physics Letters, Vol. 92, Issue 14, Article No. 143118
  • DOI: 10.1063/1.2909150

Giant piezoresistance effect in silicon nanowires
journal, October 2006

Silicon Device Scaling to the Sub-10-nm Regime
journal, December 2004
  • Ieong, Meikei; Doris, Bruce; Kedzierski, Jakub
  • Science, Vol. 306, Issue 5704, p. 2057-2060
  • DOI: 10.1126/science.1100731

Optical and Electrochemical Properties of Optically Transparent, Boron-Doped Diamond Thin Films Deposited on Quartz
journal, December 2002
  • Stotter, Jason; Zak, Jerzy; Behler, Zack
  • Analytical Chemistry, Vol. 74, Issue 23, p. 5924-5930
  • DOI: 10.1021/ac0203544

Review on diamond based piezoresistive sensors
conference, January 1998